Abstract:Noise suppression is one of the key links for partial discharge(PD) online monitoring. Focusing on the noise suppression, a PD signal denoising method based on improved quantum-behaved particle swarm optimization sparse decomposition was given in this paper. More specifically, the principle of this method is signal sparse decomposition. The partial discharge signal matching overcomplete dictionary which only matches the features of PD signals was built. Based upon these, polluted PD signal was sparse decomposed by matching pursuit(MP) algorithm in this dictionary to search the best matching atoms. Meanwhile, the improved quantum-behaved particle swarm optimization(IQPSO) was presented to accelerate the searching process, and the residual ratio was chosen to be the terminating condition of the iteration as well. Since no noise PD signal component can be sparse represented by the best atoms while the noise cannot, the goal of denoising was finally achieved. The denoising method presented in this article is applied on the simulated and measuring signals, the results are critical compared with the effect of the PD denoising method based on the morphological wavelet, the results show that the denoising method of this paper is available to precisely suppress the noise interference of PD signal with high accuracy results; the distortion of waveform after denoising cannot be found and the features of PD signal were well kept.
[1] 王昌长, 李福琪, 高胜友. 电力设备的在线监测与故障诊断[M]. 北京: 中国电力出版社, 2006. [2] 杨霁, 李剑, 王有元, 等. 变压器局部放电监测中的小波去噪方法[J]. 重庆大学学报, 2004, 27(10): 67-70. Yang Ji, Li Jian, Wang Youyuan, et al. Application of wavelet denoising in partial discharge online monitoring of transformer[J]. Journal of Chongqing University, 2004, 27(10): 67-70. [3] 尚海昆, 苑津莎, 王瑜, 等. 平移不变小波迹消噪方法在局部放电检测中的应用[J]. 电工技术学报, 2013, 28(10): 33-40. Shang Haikun, Yun Jinsha, Wang Yu. Application of wavelet footprints based on translation-invariant in of partial discharge signal detection[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 33-40. [4] Dey D, Chatterjee B, Chakravorti S, et al. Cross- wavelet transform as a new paradigm for feature extraction from noisy partial discharge pulses[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(1): 157-166. [5] 江天炎, 李剑, 杜林, 等. 粒子群优化小波自适应阈值法用于局部放电去噪[J]. 电工技术学报, 2012, 27(5): 77-83. Jiang Tianyan, Li Jian, Du Lin, et al. Denoising for partial discharge signals using PSO adaptive wavelet threshold estimation[J]. Transactions of China Elec- trotechnical Society, 2012, 27(5): 77-83. [6] 钱勇, 黄成军, 陈陈, 等. 多小波消噪算法在局部放电检测中的应用[J].中国电机工程学报, 2007, 27(6): 89-95. Qian Yong, Huang Chengjun, Chen Chen, et al. App- lication of multi-wavelet based on denoising algorithm in partial discharge detection[J]. Proceedings of the CSEE, 2007, 27(6): 89-95. [7] 朱明. 复杂体制雷达辐射源信号时频原子特征研究[D]. 成都, 西南交通大学, 2008. [8] 罗勇江. 宽带数字侦察接收机若干关健技术研究及应用[D]. 西安, 西安电子科技大学, 2012. [9] Mallat S. G, Zhang Zhifeng. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. [10] 宋蓓蓓, 孙文方. 基于稀疏重建的压缩图像质量提高方法[J]. 华中科技大学学报(自然科学版), 2012, 40(9): 30-33, 43. Song Beibei, Sun Wenfang. Compression image quality improvement via sparse reconstruction[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(9): 30-33, 43. [11] Protter M, Elad M.Image sequence denoising via sparse and redundant representations[J]. IEEE Transac- tions on Image Processing, 2009, 18(1): 27-35. [12] John Wright, Allen Y. Yang, Arvind Ganesh, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. [13] 刘云鹏, 律方成, 李成榕, 等. 形态学一小波综合滤波器抑制局放现场干扰[J]. 高电压技术, 2004, 30(2): 29-31. Liu Yunpeng, Lü Fangcheng, Li Chengrong, et al. Study of novel integrated morphology-wavelet filter in suppressing PD’s field noise[J]. High Voltage Engineering, 2004, 30(2): 29-31. [14] 刘云鹏, 律方成, 李成榕, 等. 基于数学形态滤波器抑制局部放电窄带周期性干扰的研究[J]. 中国电机工程学报, 2004, 24(3): 169-173. Liu Yunpeng, Lü Fangcheng, Li Chengrong, et al. Study of the mathematical morphological filter in suppressing periodic narrow bandwidth noise of PD[J]. Proceedings of the CSEE, 2004, 24(3): 169-173. [15] 梁巍, 阙沛文, 陈亮, 等. 基于残差比阈值的迭代终止条件匹配追踪稀疏分解方法[J]. 上海交通大学学报, 2010, 2(44): 171-175. Liang wei, Que Peiwen, Chen Liang, et al. Residual ratio iteration termination condition for MP method[J]. Journal of Shanghai Jiaotong University, 2010, 2(44): 171-175. [16] 黄成军, 郁惟镛. 基于小波分解的自适应滤波算法在抑制局部放电窄带周期干扰中的应用[J]. 中国电机工程学报, 2003, 23(1): 107-111. Huang Chengjun, Yu Weiyong. Study of adaptive filter algorithm based on wavelet analysis in suppressing PD’s periodic narrow bandwidth noise[J]. Proceedings of the CSEE, 2003, 23(1): 107-111. [17] Sun J, Feng B, Xu W. Particle swarm optimization with particles having quantum behavior[C]. Congress on Evolutionary Computation, Portland, USA, 2004: 325- 331. [18] 方伟, 孙俊, 谢振平. 量子粒子群优化算法的收敛性分析及控制参数研究[J]. 物理学报, 2010, 59(6): 3686-3694. Fang Wei, Sun Jun, Xie Zhenping. Convergence analysis of quantum behaved particle swarm optimiza- tion algorithm and study on its control parameter[J]. Acta Physica Sinica, 2010, 59(6): 3686-3694. [19] 朱敏, 杨春玲. 基于混沌序列的时序数字电路BIST技术[J]. 电工技术学报, 2010, 25(6): 144-149. Zhu Min, Yang Chunling. BIST technique of sequential circuits based on chaotic sequence[J]. Transactions of China Electrotechnical Society, 2010, 25(6): 144-149. [20] 唐炬, 高丽, 彭莉, 等. 非平稳振荡局放信号去噪效果评价参数研究[J]. 高电压技术, 2007, 33(12): 66-70. Tang Ju, Gao Li, Peng Li, et al. Study on new evaluation parameters for denoising performance of non- stationary oscillating partial discharge signals[J]. High Voltage Engineering, 2007, 33(12): 66-70. [21] 李天云, 高磊, 聂永辉. 基于经验模式分解处理局部放电数据的自适应直接阈值算法[J]. 中国电机工程学报, 2006, 26(15): 29-34. Li Tianyun, GaoLei, Nei Yonghui. A new adaptive direct-threshold algorithm to partial discharge data processing based on empirical mode decomposition[J]. Proceedings of the CSEE, 2006, 26(15): 29-34.