Nonlinear Decoupling Control for Bearingless Induction Motor Based on Support Vector Machines Inversion
Wang Zhengqi1, 2, Huang Xueliang1, 3
1. Southeast University Nanjing 210096 China; 2. Nanjing Institute of Technology Nanjing 211167 China; 3. Key Laboratory of Smart Grid Technology and Equipment in Jiangsu Province Nanjing 210096 China
Abstract:The bearingless induction motor is a nonlinear, multi-variable and strongly coupled system. To achieve rotor suspension and rotation steadily, it is necessary to realize dynamic decoupling control between torque and suspension force. In this paper, the control strategy based on least squares support vector machines(LS-SVM)α-th order inverse system method is applied to realize the decoupling control for bearingless induction motor. By cascading the inverse system of the bearingless induction motor identified by LS-SVM with the original one, the nonlinear bearingless induction motor system is decoupled into four independent pseudo-linear subsystems, that is, two radial displacement subsystems,a speed subsystem and a rotor flux subsystem. Then, linear control system techniques are applied to these linear subsystems to synthesize and simulation. The study shows that this kind of control strategy can realize dynamic decoupling control between torque and suspension forces of the bearingless induction motor.
王正齐, 黄学良. 基于支持向量机逆系统轴承异步电机非线性解耦控制[J]. 电工技术学报, 2015, 30(10): 164-170.
Wang Zhengqi, Huang Xueliang. Nonlinear Decoupling Control for Bearingless Induction Motor Based on Support Vector Machines Inversion. Transactions of China Electrotechnical Society, 2015, 30(10): 164-170.
[1] Hiromi T, Katou T, Chiba A, et al. A novel magnetic suspension-force compensation in bearingless induction- motor drive with squirrel-cage rotor[J]. IEEE Transac- tions on Industry Applications, 2007, 43(1): 66-76. [2] 王晓琳, 任新宇, 邓智泉, 等. 短路容错控制在多相无轴承永磁同步电机中的可行性分析[J]. 电工技术学报, 2012, 27(3): 105-118. Wang Xiaolin, Ren Xinyu, Deng Zhiquan, et al. Feasibility of fault-tolerant control of multi-phase permanent magnetic bearingless motors with short- circuited phases[J]. Transactions of China Electrotech- nical Society, 2012, 27(3): 105-118. [3] Suzuki T, Chiba A, Rahman M. A, et al. An air- gap-flux-oriented vector controller for stable operation of bearingless induction motors[J]. IEEE Transactions on Industry Applications, 2000, 36(4): 1069-1076. [4] Deng Zhiquan, Zhang Hongquan, Wang Xiaolin, et al. Nonlinear decoupling control of the bearingless induction motors based on the airgap motor flux orientation[J]. Chinese Journal of Aeronautics, 2002, 15(1): 38-43. [5] 朱熀秋, 沈玉祥, 张腾超, 等. 无轴承异步电机数学模型与解耦控制[J]. 电机与控制学报, 2007, 11(4): 321-325. Zhu Huangqiu, Shen Yuxiang, Zhang Tengchao, et al. Mathematics model and decoupling control for self- bearing induction motors[J]. Electric machines and control, 2007, 11(4): 321-325. [6] Zhu Huangqiu, Zhou Yang, Li Tianbo, et al. Decou- pling control of 5 degrees of freedom bearingless induction motors using order inverse system method [J]. Acta Automatica Sinica, 2007, 33(3): 273-278. [7] 王正齐, 刘贤兴. 基于逆系统方法的无轴承异步电动机解耦控制[J]. 微特电机, 2009, 37(6): 46-49. Wang Zhengqi, Liu Xianxing. Decoupling control of the bearingless induction motor based on inverse system method[J]. Small & Special Electrical Machines, 2009: 37(6): 46-49. [8] 王正齐, 刘贤兴, 周进伟, 等. 无轴承异步电机的非线性逆解耦控制[J]. 控制工程, 2011, 18(6): 970-976. Wang Zhengqi, Liu Xianxing, Zhou Jinwei, et al. Nonlinear inverse decoupling control of bearingless induction motor[J]. Control Engineering of China, 2011, 18(6): 970-976. [9] 孙晓东, 朱熀秋. 基于神经网络逆系统理论无轴承异步电动机解耦控制[J]. 电工技术学报, 2010, 25(1): 43-49. Sun Xiaodong, Zhu Huangqiu. Decoupling control of bearingless induction motors based on neural network inverse system method[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 43-49. [10] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Network Letters, 1999, 9(3): 293-300. [11] Suykens J A K. Support vector machines: a nonlinear modeling and control perspective[J]. European Journal of Control, 2001, 7(2-3): 311-327. [12] 宋夫华, 李平. 支持向量机 α 阶逆系统控制—连续非线性系统[J]. 浙江大学学报(工学版), 2007, 41(3): 386-389. Song Fuhua, Li Ping. Support vector machines α th- order inverse control—nonlinear continuous systems [J]. Journal of Zhejiang University(Engineering Science), 2007, 41(3): 386-389. [13] Yuan Xiaofang, Wang Yaonan, Wu Lianghong, et al. A comprehensive nonlinear control strategy for TCSC and generator governor[J]. Transactions of China Electrotrotechnical Society, 2008, 23(7): 130-137. [14] 刘国海, 张懿, 魏海峰, 等. 基于自抗扰控制器的两电机变频调速系统最小二乘支持向量机逆控制[J]. 中国电机工程学报, 2012, 32(6): 138-144. Liu Guohai, Zhang Yi, Wei Haifeng, et al. Least squares support machines inverse control for two-motor variable frequency speed-regulation system based on active disturbances rejection[J]. Proceedings of the CSEE, 2012, 32(6): 138-144. [15] 朱熀秋, 曹莉, 李衍超, 等. 基于最小二乘支持向量机逆系统的五自由度无轴承同步磁阻电机解耦控制[J]. 中国电机工程学报, 2013, 33(5): 99-108. Zhu Huangqiu, Cao Li, Li Yanchao, et al. Decoupling control of 5-degree of freedom bearingless synchronous reluctance motor based on least square support vector machine inverse system[J]. Proceedings of the CSEE, 2013, 33(5): 99-108. [16] 荣海娜, 张葛祥, 金炜东. 系统辨识中支持向量机核函数及其参数的研究[J]. 系统仿真学报, 2006, 18(11): 3204-3208. Rong Haina, Zhang Gexiang, Jin Weidong. Selection of kernel functions and parameters for support vector machines in system identification[J]. Journal of System Simulation, 2006, 18(11): 3204-3208.