Three-Dimensional Earth Conductivity Structure Modelling in North China and Calculation of Geoelectromagnetic Fields During Geomagnetic Disturbances Based on Finite Element Method
Wang Zezhong1,Dong Bo1,Liu Chunming2,Liu Liping3,Liu Lianguang2
1. Beijing Key Laboratory of High Voltage and EMC North China Electric Power University Beijing 102206 China; 2. North China Electric Power University Beijing 102206 China; 3. China Electric Power Research Institute Beijing 100192 China
Abstract:The three-dimensional earth conductivity structure is modelled by the magnetotelluric data. The three-dimensional geoelectromagnetic fields are calculated based on finite element method using the geomagnetic field data from the magnetic observatories for a specific geomagnetic disturbance. Unlike the traditional modelling techniques, air region and source region are not taken into consideration in this paper. Under this circumstance, the computation results in the earth can also be achieved due to the uniqueness theorem. The geomagnetic field variations during a selected period are applied as the boundary conditions of conductivity model. Combined with the locations of “Sanhua” UHV transmission lines, voltage differences at several substations are shown in the whole period. The geoelectric field at the earth’s surface and the induced currents in different depths are also presented at the moment of maximum voltage difference.
王泽忠,董博,刘春明,刘丽平,刘连光. 华北地区大地电性结构三维建模及磁暴感应地电场有限元计算[J]. 电工技术学报, 2015, 30(3): 61-66.
Wang Zezhong,Dong Bo,Liu Chunming,Liu Liping,Liu Lianguang. Three-Dimensional Earth Conductivity Structure Modelling in North China and Calculation of Geoelectromagnetic Fields During Geomagnetic Disturbances Based on Finite Element Method. Transactions of China Electrotechnical Society, 2015, 30(3): 61-66.
[1] Pirjola R. Geomagnetically induced currents during magnetic storms[J]. IEEE Transactions on Plasma Science, 2000, 28(6): 1867-1873. [2] 刘连光, 吴伟丽. 磁暴影响电力系统安全风险评估思路与理论框架[J]. 中国电机工程学报, 2014, 34(10): 1583-1591. Liu Lianguang, Wu Weili. Security risk assessment ideas and theoretical framework for power system considering geomagnetic storm[J]. Proceedings of the CSEE, 2014, 34(10): 1583-1591. [3] Zheng K, Trichtchenko L, Pirjola R, et al. Effects of geophysical parameters on GIC Illustrated by benchmark network modeling[J]. IEEE Transactions on Power Delivery, 2013, 28(2): 1183-1191. [4] Kappenman J. Storm sudden commencement events and the associated geomagnetically induced current risks to ground-based systems at low-latitude and midlatitude locations[J]. Space Weather, 2003, 1(3): 1016-1031. [5] 刘春明. 中低纬电网地磁感应电流及其评估方法研究[D]. 北京: 华北电力大学, 2009. [6] Marti L, Rezaei Zare A, Boteler D. Calculation of induced electric field during a geomagnetic storm using recursive convolution[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 802-807. [7] Liu C M, Liu L G, Pirjola R. Geomagnetically induced currents in the high-voltage power grid in china[J]. IEEE Transactions on Power Delivery, 2009, 24(4): 2368-2374. [8] Liu C M, Li Y L, Pirjola R. Observations and modeling of GIC in the Chinese large-scale high- voltage power networks[J]. Journal of Space weather and Space Climate, 2014, 4(A03): 1-7. [9] Gilbert J L. Modelling the effect of the ocean-land interface on induced electric fields during geomagnetic storms[J]. Space Weather, 2005, (S04A03): 1-9. [10] Pirjola R. Practical model applicable to investigating the coast effect on the geoelectric field in connection with studies of geomagnetically induced currents[J]. Advances in Applied Physics, 2013, 1(1): 9-28. [11] Wei L H, Homeier N, Gannon J L. Surface electric fields for north America during historical geomagnetic storms[J]. Space Weather, 2013, 11(8): 451-462. [12] Marti L, Yiu C, Rezaei Zare A, et al. Simulation of geomagnetically induced currents with piecewise layered-earth models[J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1886-1893. [13] Viljanen A, Pirjola R, Wik M, et al. Continental scale modelling of geomagnetically induced currents[J]. Journal of Space weather and Space Climate, 2012, 2(A17): 1-11. [14] 周克定. 工程电磁场数值计算理论方法及应用[M]. 北京: 高等教育出版社, 1994. [15] Bíró O, Preis K. On the use of magnetic vector potential in the finite element analysis of three- dimensional eddy currents[J]. IEEE Transactions on Magnetics, 1989, 25(4): 3145-3159. [16] 董树文, 李廷栋, 陈宣华, 等. 我国深部探测技术与实验研究进展综述[J]. 地球物理学报, 2012, 55(12): 3884-3901. Dong Shuwen, Li Tingdong, Chen Xuanhua, et al. Progress of deep exploration in mainland China: A review[J]. Chinese Journal of Geophysics, 2012, 55(12): 3884-3901. [17] 董树文, 李廷栋. SinoProbe—中国深部探测实验[J]. 地质学报, 2009, 83(7): 895-909. Dong Shuwen, Li Tingdong. SinoProbe: the explora- tion of the deep interior beneath the Chinese continent [J]. Acta Geologica Sinica, 2009, 83(7): 895-909. [18] 魏文博, 叶高峰, 金胜, 等. 华北地区东部岩石圈到电性结构研究—减薄的华北岩石圈特点[J]. 地学前缘, 2008, 15(4): 204-216. Wei wenbo, Ye Gaofeng, Jin Sheng, et al. Geoelectric structure of lithosphere beneath eastern North China: features of a thinned lithosphere from magnetotelluric soundings[J]. Earth Science Frontiers, 2008, 15(4): 204-216. [19] 叶高峰, 魏文博, 邓明, 等. 青藏及华北阵列式区域大地电磁场标准观测网建设方法与实验[J]. 地质学报, 2010, 84(6): 801-807. Ye Gaofeng, Wei wenbo, Deng Ming, et al. Construc- tion methods and experiments of magnetotelluric standard network at the Tibetan plateau and north China[J]. Acta Geologica Sinica, 2010, 84(6): 801-807. [20] 余华兵. 针对电网地磁感应电流的地磁场变化特征提取[D]. 北京: 华北电力大学, 2014. [21] 盛剑霓等. 工程电磁场数值分析[M]. 西安: 西安交通大学出版社, 1991. [22] 杨儒贵. 电磁定理和原理及其应用[M]. 成都: 西南交通大学出版社, 2002. [23] Dong B, Danskin D, Pirjola R, et al. Evaluating the applicability of the finite element method for modelling of geoelectric fields[J]. Annales Geophysicae, 2013, 31(10): 1689-1698.