Abstract:For microstructure changes of XLPE cable insulation layer, this paper analyzes insulation layer of the new samples, aged samples and rejuvenation samples by Fourier Transform Infrared Spectroscopy (FTIR), and analyzes the causes. Compared with the new sample, the methyl (-CH3) groups and hydroxyl (-OH) groups are increasing and the absorption peak intensity of the carbon-oxygen double bond (C=O) is strengthening in the insulating layer of aged samples. These chemical changes indicate that molecular bond breaking, oxidation degradation and other chemical changes occur in water tree during the process of aging. Furthermore, the absorption peak intensity of the methyl groups, hydroxyl groups and carbon-oxygen double bond spectra indicate a decrease after rejuvenation. However, the absorption peak intensity of C-Si bond is strengthening. Meanwhile, qualitative analysis for chemical elements in water tree is tested by scanning electron microscope and X-ray photoelectron spectroscopy. The results reveal that atomic percentage and weight percentage of Si increase in water tree area. Consequently, the content of chemical elements and molecular structure occur changes in water tree after rejuvenation.
杨滴, 周凯, 陶霰韬, 陶文彪, 尧广. 交联聚乙烯电缆水树修复前后电缆微观结构的变化[J]. 电工技术学报, 2015, 30(1): 228-234.
Yang Di, Zhou Kai, Tao Xiantao, Tao Wenbiao, Yao Guang. Microstructure Changes of XLPE Cable in Water Tree Area Before and After Injection Rejuvenation. Transactions of China Electrotechnical Society, 2015, 30(1): 228-234.
[1] 陈涛, 魏娜娜, 陈守娥, 等. 交联聚乙烯电力电缆水树产生机理、检测及预防[J]. 电线电缆, 2009(4): 1-3. Chen Tao, Wei Nana, Chen Shoue, et al. Mechanism, detection and prevention of water treeing in XLPE power cables[J]. Electric Wire & Cable, 2009(4): 1-3. [2] Steennis E F, Kreuger F H. Water treeing in polye- thylene cables[J]. IEEE Transactions on Electrical Insulation, 1990 (5): 989-1028. [3] 赵健康, 欧阳本红, 赵学童, 等. 水树对XLPE电缆绝缘材料性能和微观结构影响的研究进展[J]. 绝缘材料, 2010, 43(5): 50-56. Zhao Jiankang, Ouyang Benhong, Zhao Xuetong, et al. Review of influence of water-tree on microstructure and properties of XLPE cable insulation material[J]. Insulating Materials, 2010, 43(5): 50-56. [4] 党智敏, 亢婕, 屠德民. 新型抗水树聚乙烯绝缘电缆料的研究[J]. 中国电机工程学报, 2002, 22(1): 8-11. Dang Zhimin, Kang Jie, Tu Demin. Study on new cable material of resisting water treeing in polyethylene [J]. Proceedings of the CSEE, 2002, 22(1): 8-11. [5] Ross R, Smit J J. Composition and growth of water trees in XLPE[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1992(3): 519-533. [6] 周凯, 赵威, 管顺刚, 等. 硅氧烷对水树老化后的交联聚乙烯电缆的修复研究[J]. 电工技术学报, 2013, 28(1): 9-35. Zhou Kai, Zhao Wei, Guan Shungang, et al. Study of siloxane injection technology on XLPE cables for water tree aging[J]. Transactions of China Electrotech- nical Society, 2013, 28(1): 9-35. [7] 汪朝军, 田鹏, 刘勇, 等. 有机硅注入技术对电缆水树缺陷的绝缘修复研究[J]. 绝缘材料, 2011, 44(6): 16-20. Wang Chaojun, Tian Peng, Liu Yong, et al. The effect of siloxane liquid injection technique on water tree rejuvenation of XLPE cables[J]. Insulating Materials, 2011, 44(6): 16-20. [8] Glen J Bertini. New developments in solid dielectric life extension technology[C]. IEEE ISEI, 2004, 9: 527-531. [9] Bertini G, Lacenere J S, Meyer D F, et al. Extending the service life of 15kV polyethylene URD cable using silicone liquid[J]. IEEE Transactions on Power Delivery, 1989, 4(4): 1991-1996. [10] Ross R. Inception and propagation mechanism of water treeing[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1998, 12(6): 660-680. [11] 朱晓辉. 老化中压XLPE电缆修复新技术研究[J]. 电力设备, 2007, 5(8): 42-44. Zhu Xiaohui. Study on new reparation technology for ageing MV XLPE cable[J]. Electrical Equipment, 2007, 5(8): 42-44. [12] 朱晓辉. 修复水树老化XLPE电缆的修复液注入技术[J]. 高电压技术, 2004, 30(S1): 16-17. Zhu Xiaohui. The repair liquid injection technology of XLPE cable for repairing water tree[J]. High Voltage Engineering, 2004, 30(S1): 16-17. [13] 周凯, 陶霰韬, 赵威, 等. 在水树通道内生成纳米TiO 2 的电缆修复方法及其绝缘增强机制研究[J]. 中国电机工程学报, 2013, 33(7): 202-210. Zhou Kai, Tao Xiantao, Zhao Wei, et al. A cable rejuvenation method based on formation of nano- TiO 2 inside water tree and its insulation enhancement mechanism[J]. Proceedings of the CSEE, 2013, 33(7): 202-210. [14] Tanaka T, Fukuda T, Suzuki S. Water tree formation and lifetime estimation in 3.3kV and 6.6kV XLPE and PE power cables[J]. IEEE Transactions of Power Application System, 1976, 95(2): 1892-1900. [15] 朱化雨, 赵洪义. 一种聚苯基甲基硅氧烷改性环氧树脂耐高温防腐蚀涂料的制备研究[J]. 化工新型材料, 2010, 38(8): 103-106. Zhu Huayu, Zhao Hongyi. Polyphenylmethyl silicone modified epoxy resins and a new type of heat-resistant anti-corrosive coating[J]. New Chemical Materials, 2010, 38(8): 103-106. [16] 李因文, 沈敏敏, 黄活阳, 等. 聚甲基苯基硅氧烷改性环氧树脂的合成与应用[J]. 涂料工业, 2008, 38(11): 8-11. Li Yinwen, Shen Minmin, Huang Huoyang, et al. Synthesis and application of polymethylphenyl silicone modified epoxy resins[J]. Paint & Coatings Industry, 2008, 38(11): 8-11. [17] Hvidsten S, Kvande S. Severe degradation of the conductor screen of service and laboratory aged medium voltage XLPE insulated cables[J], IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(1): 155-161. [18] Serge Pelissou, Gilles Lessard. Underground medium-voltage cable rejuvenation— part I: laboratory tests on cables[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2324-2332.