Abstract:In order to improve the characteristic of wind-photovoltaic-storage hybrid system and reduce the compensation pressure of battery energy station, a coordinated optimal control strategy is presented, which consists of online rolling optimization and active power real-time control. The aim of online rolling optimization module is to minimize the average power deviation and charge-discharge times of battery energy station and maximize the residual capacity of battery energy station in the end of optimization through non-dominated sorting genetic algorithm(NSGA)-Ⅱ algorithm. A minute level of scheduling plan is given by this module. Active power real-time control part consists of wind/photovoltaic trimming scheduling power module and battery energy station real-time control module. The aim of wind/photovoltaic trimming scheduling power module is to balance the excess scheduling plan based on real-time wind speed and illumination intensity. Dynamic power output limit is given in battery energy station real-time control module to improve its ability to deal with wind/photovoltaic ramping. Simulation shows the proposed strategy can effectively reduce the average power deviation of hybrid system and improve the hybrid system’s ability to track scheduling plan under the minimum charge-discharge times of battery station.
戚永志, 刘玉田. 风光储联合系统输出功率滚动优化与实时控制[J]. 电工技术学报, 2014, 29(8): 265-273.
Qi Yongzhi, Liu Yutian. Output Power Rolling Optimization and Real-Time Control in Wind-Photovoltaic-Storage Hybrid System. Transactions of China Electrotechnical Society, 2014, 29(8): 265-273.
[1] 中国可再生能源学会风能专业委员会. 2012年中国风电装机容量统计[R]. 北京, 2013. [2] Muyeen S M, Takahashi R, Murata T, et al. A variable speed wind turbine control strategy to meet wind farm grid code requirements[J]. IEEE Transactions on Power Systems, 2010, 25(1): 331-340. [3] 倪琳娜, 罗吉, 王少荣. 含风电电力系统的频率控制[J]. 电工技术学报, 2011, 26(S1): 235-241. Ni Linna, Luo Ji, Wang Shaorong. Frequency control of power system with wind power integration[J]. Transactions of China Electrotechnical Society, 2011, 26(S1): 235-241. [4] Mahoney W P, Parks K, Wiener G, et al. A wind power forecasting system to optimize grid integration [J]. IEEE Transactions on Sustainable Energy, 2012, 3(4): 670-682. [5] 刘兴杰, 米增强, 杨奇逊, 等. 一种基于EMD的短期风速多步预测方法[J]. 电工技术学报, 2010, 25(4): 165-170. Liu Xingjie, Mi Zengqiang, Yang Qixun, et al. A novel multi-step prediction for wind speed based on EMD[J]. Transactions of China Electrotechnical Society, 2010, 25(4): 165-170. [6] 戚永志, 刘玉田. 风电高风险爬坡有限度控制[J]. 中国电机工程学报, 2013, 33(13): 69-75. Qi Yongzhi, Liu Yutian. Finite control of high risk wind power ramping[J]. Proceedings of the CSEE, 2013, 33(13): 69-75. [7] 侯婷婷, 娄素华, 张滋华, 等. 协调大规模风电汇聚外送的火电容量优化[J]. 电工技术学报, 2012, 27(10): 255-261. Hou Tingting, Lou Suhua, Zhang Zihua, et al. Capacity optimization of corollary thermal sources transmitted with large-scale clustering wind power[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 255-261. [8] 吴晋波, 文劲宇, 孙海顺, 等. 基于储能技术的交流互联电网稳定控制方法[J]. 电工技术学报, 2012, 27(6): 261-267. Wu Jinbo, Wen Jingyu, Sun Haishun, et al. Study of control method for improving AC interconnected grid stability based on energy storage technology[J]. Transactions of China Electrotechnical Society, 2012, 27(6): 261-267. [9] 李国杰, 唐志伟, 聂宏展, 等. 钒液流储能电池建模及其平抑风电波动研究[J]. 电力系统保护与控制, 2010, 38(22): 115-119. Li Guojie, Tang Zhiwei, Nie Hongzhan, et al. Modelling and controlling of vanadium redox flow battery to smooth wind power fluctuations[J]. Power Systems Protection and Control, 2010, 38(22): 115- 119. [10] 施琳, 罗毅, 涂光瑜, 等. 考虑风电场可调度性的储能容量配置方法[J]. 电工技术学报, 2013, 28(5): 120-127. Shi Lin, Luo Yi, Tu Guangyu, et al. Energy storage sizing method considering dispatchability of wind farm[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 120-127. [11] 胡国珍, 段善旭, 蔡涛, 等. 基于液流电池储能的光伏发电系统容量配置及成本分析[J]. 电工技术学报, 2012, 27(5): 260-267. Hu Guozhen, Duan Shanxu, Cai Tao, et al. Sizing and cost analysis of photovoltaic generation system based on vanadium redox battery[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 260-267. [12] 李金鑫, 张建成. 风光储发电系统预测功率波动性优化方法[J]. 电源技术, 2013, 37(1): 62-64. Li Jinxin, Zhang Jiancheng. Optimization method to fluctuations of predictive power of HPWS[J]. Power Sources Technology, 2013, 37(1): 62-64. [13] 李碧辉, 申洪, 汤涌, 等. 风光储联合发电系统储能容量对有功功率的影响及评价指标[J]. 电网技术, 2011, 35(4): 123-128. Li Bihui, Shen Hong, Tang Yong, et al. Impacts of energy storage capacity configuration of HPWS to active power characteristics and its relevant indices[J]. Power System Technology, 2011, 35(4): 123-128. [14] 朱兰, 严正, 杨秀, 等. 风光储微网系统蓄电池容量优化配置方法研究[J]. 电网技术, 2012, 36(12): 26-31. Zhu Lan, Yan Zheng, Yang Xiu, et al. Optimal configuration of battery capacity in microgrid composed of wind power and photovoltaic generation with energy storage[J]. Power System Technology, 2012, 36(12): 26-31. [15] 徐林, 阮新波, 张步涵, 等. 风光蓄互补发电系统容量的改进优化配置方法[J]. 中国电机工程学报, 2012, 32(25): 88-98. Xu Lin, Ruan Xinbo, Zhang Buhan, et al. An improved optimal sizing method for wind-solar- battery hybrid power system[J]. Proceedings of the CSEE, 2012, 32(25): 88-98. [16] 汪海瑛, 白晓民, 许婧. 考虑风光储协调运行的可靠性评估[J]. 中国电机工程学报, 2012, 32(13): 13-20. Wang Haiying, Bai Xiaomin, Xu Jing. Reliability assessment considering the coordination of wind power, solar energy and energy storage[J]. Proceedings of the CSEE, 2012, 32(13): 13-20. [17] 刘霞, 江全元. 风光储混合系统的协调优化控制[J]. 电力系统自动化, 2012, 36(14): 95-100. Liu Xia, Jiang Quanyuan. An optimal coordination control of hybrid wind/photovoitaic/energy storage system[J]. Automation of Electric Power Systems, 2012, 36(14): 95-100. [18] 张野, 郭力, 贾宏杰, 等. 基于电池荷电状态和可变滤波时间常数的储能控制方法[J]. 电力系统自动化, 2012, 36(6): 34-38. Zhang Ye, Guo Li, Jia Hongjie, et al. An energy storage control method based on state of charge and variable filter time constant[J]. Automation of Electric Power Systems, 2012, 36(6): 34-38. [19] 王洪涛, 刘玉田. 基于NSGA-Ⅱ的多目标输电网架最优重构[J]. 电力系统自动化, 2009, 33(23): 14-18. Wang Hongtao, Liu Yutian. Multi-objective optimiza- tion of power system reconstruction based on NSGA-Ⅱ[J]. Automation of Electric Power Systems, 2009, 33(23): 14-18.