Abstract:Microgrid is an effective way to make full use of distributed energy resources. It has great significance to both economy and society. Due to the variety of distributed energy resources and the complicated operation modes of microgrid, the planning, operation, protection, control, simulation and experiment of microgrid are quite distinct from traditional power system. Critical issues and current status of the key technologies in microgrid study are elaborated in detail. The future trends of microgrid research are also discussed.
王成山, 武震, 李鹏. 微电网关键技术研究[J]. 电工技术学报, 2014, 29(2): 1-12.
Wang Chengshan, Wu Zhen, Li Peng. Research on Key Technologies of Microgrid. Transactions of China Electrotechnical Society, 2014, 29(2): 1-12.
[1]王成山, 王守相. 分布式发电供能系统若干问题研究[J]. 电力系统自动化, 2008, 32(20): 1-4. Wang Chengshan, Wang Shouxiang. Study on some key problems related to distributed generation systems[J]. Automation of Electric Power Systems, 2008, 32(20): 1-4. [2]王成山, 李鹏. 分布式发电、微网与智能配电网的发展与挑战[J]. 电力系统自动化, 2010, 34(2): 10-14. Wang Chengshan, Li Peng. Development and challenges of distributed generation, the micro-grid and smart distribution system[J]. Automation of Electric Power Systems, 2010, 34(2):10-14. [3]Driesen J, Katiraei F. Design for distributed energy resources[J]. IEEE Power and Energy Magazine, 2008, 6(3): 30-40. [4]Lambert T, Gilman P, Lilienthal P. Micropower System Modeling with HOMER[R/OL]. Available: http: //www.mistaya.ca/homer/Micropower System Modeling With HOMER. pdf. [5]Arun P, Banerjee R, Bandyopadhyay S. Optimum sizing of photovoltaic battery systems incorporating uncertainty through design space approach[J]. Solar Energy, 2009, 83(7): 1013-1025. [6]Yingyi Hong, Ruochen Lian. Optimal sizing of hybrid wind/PV/diesel generation in a stand-alone power system using markov-based genetic algorithm[J]. IEEE Transactions on Power Delivery, 2012, 27(2): 640-647. [7]Paliwal P, Patidar N P, Nema R K. Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using particle swarm optimization[J]. Renewable Energy, 2014, 63: 194-204. [8]Michael Stadler, Chris Marnay, Afzal Siddiqui, et al. Effect of heat and electricity storage and reliability on microgrid viability: a study of commercial buildings in California and New York states[R/OL]. http: //der.lbl.gov/publications/effect-heat-electricity-storage- reliability-microgrid-viability-study-commercial-buildings-california-new-york-stat. [9]Guo Li, Liu Wenjian, CaiJiejin, et al. A two-stage optimal planning and design method for combined cooling, heat and power microgridsystem[J]. Energy Conversion and Management, 2013, 74: 433-445. [10]Rodolfo Dufo-López, José L. Bernal-Agustín, Multi- objective design of PV-Wind-diesel-hydrogen-battery systems[J]. Renew Energy, 2008, 33(12): 2559-2572. [11]Billinton R, Bagen. Generating capacity adequacy evaluation of small stand-alone power systems containing solar energy[J]. Reliability Engineering & System Safety, 2006, 91: 438-443. [12]Xu Liu, Islam S, Chowdhury A A, et al. Tired of continuous time-series analysis or calculations[J]. IEEE Industry Application Magazine, 2010, 16(5): 59-65. [13]Wang S, Li Z, Wu L, et al. New metrics for assessing the reliability and economics of microgrids in distribution system[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2852-2861. [14]王成山, 于波, 肖峻, 等. 平滑可再生能源发电系统输出波动的储能系统容量优化方法[J]. 中国电机工程学报, 2012, 32(16): 1-8. Wang Chengshan, Yu Bo, Xiao Jun, et al. Sizing of energy storage systems for output smoothing of renewable energy systems[J]. Proceedings of the CSEE, 2012, 32(16): 1-8. [15]张建华, 苏玲, 陈勇,等. 微网的能量管理及其控制策略[J]. 电网技术, 2011, 35(7): 24-28. Zhang Jianhua, Su Ling, Chen Yong, et al. Energy management of microgrid and its control strategy[J]. Power System Technology, 2011, 35(7): 24-28. [16]Su Wencong, Wang Jianhui. Energy management systems in microgrid operations[J]. The Electricity Journal, 2012, 25(8): 45-60. [17]陈妮亚, 钱政, 孟晓风, 等. 基于空间相关法的风电场风速多步预测模型[J]. 电工技术学报, 2013, 28(5): 15-21. Chen Niya, Qian Zheng, Meng Xiaofeng, et al. Multi-step ahead wind speed forecasting model based on spatial correlation and support vector machine[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 15-21. [18]周双喜, 鲁宗相. 风力发电与电力系统[M]. 北京:中国电力出版社, 2011. [19]洪博文, 郭力, 王成山, 等. 微电网多目标动态优化调度模型与方法[J]. 电力自动化设备, 2013, 33(3): 100-107. Hong Bowen, Guo Li, Wang Chengshan, et al. Model and method of dynamic multi objective optimal dispatch for microgrid[J]. Electric Power Automation Equipment, 2013, 33(3): 100-107. [20]王成山, 洪博文, 郭力, 等. 冷热电联供微网优化调度通用建模方法[J]. 中国电机工程学报, 2013, 33(31): 26-33. Wang Chengshan, Hong Bowen, Guo Li, et al. A general modeling method for optimal dispatch of combined cooling, heating and power microgrid[J]. Proceedings of the CSEE, 2013, 33(31): 26-33. [21]Ren H, Gao W. A MILP model for integrated plan and evaluation of distributed energy systems[J]. Applied Energy, 2010, 87(3): 1001-1014. [22]Conti S,Nicolosi R,Rizzo S A.Optimal dispatching of distributed generators in an MV autonomous micro- grid to minimize operating costs and emissions[C]. IEEE International Symposium on Industrial Electronics(ISIE), Bari, Italy, 2010: 2542-2547. [23]Ren H, Zhou W, Nakagami K I, et al. Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects[J].Applied Energy,2010,87(12):3642-3651. [24]Ye Z, Kolwalkar A, Zhang Y, et al. Evaluation of anti-islanding schemes based on nondetection zone concept[J]. IEEE Transactions on Power Electronics, 2004, 19(5): 1171-1176. [25]IEEE Standards Association. IEEE std 1547.4-2011, IEEE guide for design, operation, and integration of distributed resource island systems with electric power systems [S]. New York: IEEE, 2011. [26]Lopes L A C, Sun H. Performance assessment of active frequency drifting islanding detection methods[J]. IEEE Transactions on Energy Conversion, 2006, 21(1): 171-180. [27]张纯江, 郭忠南, 孟慧英, 等. 主动电流扰动法在并网发电系统孤岛检测中的应用[J]. 电工技术学报, 2007, 22(7): 176-180. Zhang Chunjiang, Guo Zhongnan, Meng Huiying, et al. Active current disturbing method for islanding detection of grid-connected inverters[J]. Transactions of Electrotechnical Society 2007, 22(7): 176-180. [28]Chen Xiaolong, Li Yongli. An islanding detection algorithm for inverter-based distributed generation based on reactive power control[J]. IEEE Transactions on Power Electronics, 2013: 1-12. [29]Lasseter R H. Microgrids and distributed generation [J]. Journal of Energy Engineering, 2007, 133(3): 144-149. [30]Sortomme E, Venkata S S, Mitra J. Microgrid protection using communication-assisted digital relays[J]. IEEE Transactions on Power Delivery, 2010, 25(4): 2789-2796. [31]Waleed K A Najy, H H Zeineldin, Wei Lee Woon. Optimal protection coordination for microgrids with grid-connected and islanded capability[J]. IEEE Transactions on Industrial Electronics, 2013, 60(4): 1668-1677. [32]Ali B, Ali D. Hierarchical Structure of microgrids control system[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1963-1974. [33]Chung I Y, Liu W X, Cartes D A, et al. Control methods of inverter-interfaced distributed generators in a microgrid system[J]. IEEE Transactions on Industry Applications, 2010, 46(3): 1078-1088. [34]王成山, 肖朝霞, 王守相. 微网中分布式电源逆变器的多环反馈控制策略[J]. 电工技术学报, 2009, 24(2): 100-106. Wang Chengshan, Xiao Zhaoxia, Wang S. Xouxiang. Multiple feedback loop control scheme for inverters of the micro source in microgrids[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 100-106. [35]Wang F, Duarte J L, Hendrix M A M. Pliant Active and reactive power control forgrid-interactive converters under unbalanced voltage dips[J]. IEEE Transactions on Power Electronics, 2011, 26(5): 1511-1520. [36]Wang C S, Li X L, Guo L, et al. A seamless operation mode transition control strategy for a microgrid based on master-slave control[J]. Science China(Techno. Sciences), 2012, 55(6): 1644-1654. [37]Li Y, Vilathgamuwa D M, Loh P C. Design, analysis and real-time testing of a controller for multibus microgrid system[J]. IEEE Transactions on Power Electronics, 2004, 19(5): 1195-1200. [38]Zhou H, Bhattacharya T, Tran D, et al. Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications[J]. IEEE Transactions on Power Electronics, 2011, 26(3): 923-929. [39]张野, 郭力, 贾宏杰,等. 基于平滑控制的混合储能系统能量管理方法[J]. 电力系统自动化, 2012, 36(1): 36-40. Zhang Y, Guo L, Jia H J, et al. An enery management method of hybrid energy storage system based on smoothing control[J]. Automation of Electric Power Systems, 2012, 36(1): 36-40. [40]王成山, 刘梦璇, 陆宁. 采用居民温控负荷控制的微网联络线功率波动平滑方法[J]. 中国电机工程学报, 2012, 32(25): 109-117. Wang Chengshan, Liu Mengxuan, Lu Ning. A tie-line power smoothing method for microgrid using residential thermostatically-controlled loads[J]. Procee- dings of the CSEE, 2012, 32(25): 109-117. [41]Peças Lopes J A, C L Moreira. Defining control strategies for MicroGrids islanded operation[J]. IEEE Transactions on Power Systems, 2006, 21(2): 916-924. [42]Guerrero J, Juan C V, Matas J, et al. Hierarchical control of droop-controlled AC and DC microgrids-a general approach toward standardization[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 158-171. [43]Ali B, Ali D, Frank L L. Distributed cooperative secondary control of microgrids using feedback linearization[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3462-3470. [44]Qobad S, Josep M G, Juan C V. Distributed secondary control for islanded microgrids—a novel approach[J]. IEEE Transactions on Power Electronics, 2014, 29(2): 1018-1030. [45]王成山, 高菲, 李鹏,等. 低压微网控制策略研究[J]. 中国电机工程学报, 2012, 32(25): 2-8. Wang Chengshan, Gao Fei, Li Peng, et al. Control strategy research on low voltage microgrid[J]. Proceedings of the CSEE, 2012, 32(25): 2-8. [46]Yasser A R I M, Amr A R. Hierarchical control system for robust microgrid operation and seamless mode transfer in active distribution systems[J]. IEEE Transactions on Smart Grid, 2011, 2(2): 352-362. [47]郭力, 富晓鹏, 李霞林. 独立交流微网中电池储能与柴油发电机的协调控制[J]. 中国电机工程学报, 2012, 32(25): 70-77. Guo Li, Fu Xiaopeng, Li Xialin. Coordinated control of battery storage and diesel generators in isolated AC microgrid systems[J]. Proceedings of the CSEE, 2012, 32(25): 70-77. [48]王成山, 黄碧斌, 李鹏, 等. 燃料电池复杂非线性静态特性模型简化方法[J]. 电力系统自动化, 2011, 35(7): 64-69. Wang Chengshan, Huang Bibin, Li Peng, et al. Model simplification method of complex nonlinear static characteristics of fuel cell[J]. Automation of Electric Power Systems, 2011, 35(7): 64-69. [49]王成山, 黄碧斌, 李鹏, 等. 自动微分技术在分布式发电系统暂态仿真中的应用[J]. 电力系统自动化, 2010, 34(23): 71-75, 101. Wang Chengshan, Huang Bibin, Li Peng, et al. Application of automatic differentiation technique to transient simulation of distributed generation system [J]. Automation of Electric Power Systems, 2010, 34(23): 71-75, 101. [50]王守相, 黄丽娟, 王成山, 等. 分布式发电系统的不平衡三相潮流计算[J]. 电力系统自动化设备, 2007, 27(8): 11-15. Wang Shouxiang, Huang Lijuan, Wang Chengshan, et al. Unbalanced three-phase power flow calculation for distributed power generation system[J]. Electric Power Automation Equipment, 2007, 27(8): 11-15. [51]王成山, 孙充勃, 彭克, 等. 微电网交直流混合潮流算法研究[J]. 中国电机工程学报, 2013, 33(4): 8-15. Wang Chengshan, Sun Chongbo, Peng Ke, et al. Study on AC-DC hybrid power flow algorithm for microgrid[J]. Proceedings of the CSEE, 2013, 33(4): 8-15. [52]高毅, 李继平, 王成山. 基于变量自适应分组的电力系统多速率仿真算法[J]. 电力自动化设备, 2011, 31(2): 1-6. Gao Yi, Li Jiping, Wang Chengshan. Multirate method for power system simulation based on self-adaptive variable grouping[J]. Electric Power Automation Equipment, 2011, 31(2): 1-6. [53]王成山, 彭克, 李琰, 等. 一种适用于分布式发电系统的显式—隐式混合积分算法[J]. 电力系统自动化, 2011, 35(19): 28-32. Wang Chengshan, Peng Ke, Li Yan, et al. An explicit-implicit hybrid integration algorithm for distributed generation systems[J]. Automation of Electric Power Systems, 2012, 35(19): 28-32. [54]王丹, 王成山. 基于数值微分法求导的分布式发电系统仿真算法[J]. 电力系统自动化, 2009, 33(17): 81-85. Wang Dan, Wang Chengshan. A stability simulation method of distributed generation system based on numerical differentiation method[J]. Automation of Electric Power Systems, 2009, 33(17): 81-85. [55]王成山, 李鹏, 黄碧斌, 等. 一种计及多重开关的电力电子时域仿真插值算法[J]. 电工技术学报, 2010, 25(6): 83-88. Wang Chengshan, Li Peng, Huang Bibin, et al. An interpolation algorithm for time-domain simulation of power electronics circuit considering multiple switching events[J]. Transactions of China Electrotechnical Society, 2010, 25(6): 83-88. [56]Mahseredjian J, Dube L, Zou M, et al. Simultaneous solution of control system equations in EMTP[J]. IEEE Transactions on Power Systems, 2006, 21(1): 117-124. [57]李鹏, 丁承第, 王成山, 等. 基于多核心处理器的分布式发电微网系统暂态并行仿真方法[J]. 中国电机工程学报, 2013, 33(16): 171-178. Li Peng, Ding Chengdi, Wang Chengshan, et al. A parallel algorithm of transient simulation for distributed generation system based on multi-core CPU [J]. Proceedings of the CSEE, 2013, 33(16): 171-178. [58]Wang Chengshan, Yu Hao, Li Peng, et al. Krylov subspace based model reduction method for transient simulation of active distribution grid[C]. 2013 IEEE PES General Meeting, Vancouver, Canada, 2013: 1-5. [59]Pak L F, Dinavahi V. Real-time simulation of a wind energy system based on the doubly-fed induction generator[J]. IEEE Transactions on Power Systems, 2009, 24(3): 1301-1309. [60]Georgakis D, Papathanassiou S, Hatziargyriou N, Operation of a prototype microgrid system based on micro-sources[C]. Power Electronics Specialists Conference, 2004: 2521-2526. [61] Lasseter R H, Eto J H, Schenkman B, et al. CERTS microgrid laboratory test bed[J]. IEEE Transactions on Power Delivery, 2011, 26(1): 325-332. [62] Kroposki B, Basso T, DeBlasio R. Microgrid standards and technologies[C]. 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, 2008: 1-4.