Abstract:Mixed-phase ice will make conductor surface extremely rough which leads the electric field distorted seriously. The domestic and foreign scientists had done much research on icing conductor, but they always neglecting that operation conductor energized icing and scaled wire was applied to study actual line, even there has been no in-depth analysis of how energized mixed-phase icing influents corona onset voltage. As to explorer effect law, a series AC corona test of single, double and triple bundle conductors were implemented in the artificial climate chamber, UV imaging technology and I-U curve fitting were applied to analyze inception voltage, and then established the finite element model to analyze the distortion rule of conductor surface electric field. Results show that energized mixed-phase ice can cause the inception voltage value down above 50% significantly, Icing in diverse electric field makes different corona onset voltages. As the icing time increase, corona onset voltage will decrease continually, but it will gradually become saturated. In the same icing time, the bundle conductors with more sub-conductors will obtain the higher corona onset voltage. Icing morphology and the corona inception voltage dose not vary with the difference of the freezing-water conductivity. Icicle growing longer and sharper will make electric field distorted more and more seriously. The conclusion of this paper can provide selection reference and onset voltage calculation for the overhead transmission line in mixed-phase iced area.
蒋兴良, 张满, 舒立春, 胡建林, 吴尧, 何彦谆. 分裂导线混合凇带电覆冰后的起晕电压跌落研究[J]. 电工技术学报, 2013, 28(10): 47-58.
Jiang Xingliang, Zhang Man, Shu Lichun, Hu Jianlin, Wu Yao, He Yanzhun. Research on Decrease Regularity of Corona Onset Voltage of Bundle Conductor after Energized Mixed-Phase Icing. Transactions of China Electrotechnical Society, 2013, 28(10): 47-58.
[1] 曾庆禹. 特高压输电线路电气和电晕特性研究[J]. 电网技术, 2007, 31(19): 1-8. Zeng Qingyu. Study on electric characteristic and corona performance of UHV AC transmission line[J]. Power System Technology, 2007, 31(19): 1-8. [2] 胡毅, 胡建勋, 刘庭. 我国南方地区电网大范围覆冰灾害的特点分析与防治措施[J]. 电力设备. 2008, 9(6), 1-4. Hu Yi, Hu Jianxun, Liu Ting. Analysis and countermeasures for large area icing accident on power grid in northern china[J]. Electrical Equipment, 2008, 9(6): 1-4. [3] 杨永全. 近年电网冰灾事故分析及抗防对策[J]. 电力建设. 2008, 29(9), 35-37. Yang Yongquan. Analysis of recent icing-caused grid accidents and its countermeasures[J]. Electric Power Construction, 2008, 29(9): 35-37. [4] 阳林, 郝艳捧, 黎卫国, 等. 输电线路覆冰与导线温度和微气象参数关联分析[J]. 高电压技术. 2010, 36(3), 775-781. Yang Lin, Hao Yanpeng, Li Weiguo, et al. Relationships among transmission line icing, conductor temperature and local meteorology using grey relational analysis[J]. High Voltage Engineering. 2010, 36(3): 775-781. [5] Lu Tiebing, Xiong Gaolin, Cui Xiang, et al. Analysis of corona onset electric field considering the effect of space charges[J]. IEEE Transactions on Magnetics, 2011: 1390 -1393. [6] 蒋兴良, 杜珍, 莫文强, 等. 重庆地区输电线路导线覆冰特性[J]. 高电压技术. 2011, 37(12), 3065-3069. Jiang Xingliang, Du Zhen, Wang Haoyu, et al. Icing features of wire in Chongqing region[J]. High Voltage Engineering, 2011, 37(12): 3065-3069. [7] 蒋兴良, 易辉. 输电线路覆冰及防护[M]. 北京: 中国电力出版社, 2001. [8] Ndiaye I, Fofana I, Farzaneh M. Contribution to the study of the appearance and development of corona discharges on a surface of ice[C]. Canadian Conference on Electrical and Computer Engineering, . 2003, 1: 639-642. [9] M. Abdel-Salam, S. Abdel-Sattar. Calculation of corona V-I characteristics of monopolar bundles using the charge simulation method[J]. IEEE Transactions on Electrical Insulation, 1989, 24: 669-679. [10] 黄新波, 刘家兵, 蔡伟, 等. 电力架空线路覆冰雪的国内外研究现状[J]. 电网技术. 2008, 32(4): 23-28. Huang Xinbo, Liu Jiabing, Cai Wei, et al. Present research situation of icing and snowing of overhead transmission lines in china and foreign countries[J]. Power System Technology. 2008, 32(4): 23-28. [11] 胡琴, 舒立春, 蒋兴良, 等. 不同大气参数及表面状况下导线交流起晕电压的预测[J]. 高电压技术, 2010, 36(7): 1669-1673. Hu Qin, Shu Lichun, Jiang Xingliang, et al. Conductor’s AC corona onset voltage prediction under different atmospheric parameters and conductor surface conditions[J]. High Voltage Engineering, 2010, 36(7): 1669-1673. [12] Phan C L, Laforte J L. The influence of electro-freezing on ice formation on high-voltage DC transmission lines[J]. Cold Regions Science and Technology, 1981, 4(1): 15-25. [13] Farzaneh M, Laforte J L. Ice accretion on energized conductors by AC or DC: a laboratory investigation of ice treeing[J]. International Journal of Offshore and Polar Engineering, 1994, 4(1): 40-47. [14] 尤少华, 刘云鹏, 律方成, 等. 不同海拔下电晕笼分裂导线起晕电压的计算分析[J]. 中国电机工程学报, 2012, 32(4): 169-177. You Shaohua, Liu Yunpeng, Lv Fangcheng, et al. Calculation and analysis on corona onset voltage of corona cage bundle conductors at different altitudes[J]. Proceedings of the CSEE, 2012, 32(4): 169-177. [15] Sarma M P, Janischewskyj W. Electrostatic field of a system of parallel cylindrical conductors[J]. IEEE Transactions on Power Apparatus and Systems, 1969, 88(7): 1069-1079. [16] Farzaneh M, Laforte J L. Ice accretion on energized conductors by AC or DC: a laboratory investigation of ice treeing[J]. International Journal of Offshore and Polar Engineering, 1994, 4(1): 40-47. [17] 王秀玲, 杨嘉祥, 孙永鑫, 等. 架空线混合凇形成机理的数值解析[J]. 电力设备. 2008, 36(12), 26-29. Wang Xiuling, Yang Jiaxiang, Sun Yongxin, et al. Numerical simulations for formation mechanism of mixed-phase ice on overhead lines[J]. East China Electric Power, 2008, 36(12), 26-29. [18] 舒立春, 李特, 蒋兴良, 等. 交流电场强度对导线雾凇覆冰特性的影响[J]. 中国电机工程学报. 2012, 32(19): 140-147. Shu Lichun, LI Te, Jiang Xingliang, et al. Influences of AC electric field strength on conductor rime icing performance[J]. Proceedings of the CSEE. 2012, 32(19): 140-147. [19] Phillips D B, Olsen R G, Pedrow P D. Corona onset as a design optimization criterion for high voltage hardware[J]. IEEE Transactions. on Dielectrics and Electrical Insulation, 2000, 7(6): 774-751. [20] 赖向平, 舒立春, 蒋兴良, 等. 冰凌针-板间隙直流正极性下起始电晕特性的研究[J]. 电网技术, 2006, 30(7), 32-36. Lai Xiangping, Shu Lichun, Jiang XingHang, et al. Research on initial corona characteristics of icicle to ice-covered plane model under positive polarity[J]. Power System Technology, 2006, 30(7), 32-36. [21] 马斌, 周文俊, 汪涛, 等. 基于紫外成像技术的极不均匀电场电晕放电[J]. 高电压技术, 2006, 32(7): 13-16. Ma Bin, Zhou Wenjun, Wang Tao, et al. Corona discharge of the severe non-uniform electric field based on the uv-light imaging technology[J]. High Voltage Engineering, 2006, 32(7): 13-16. [22] 陈澜, 卞星明, 陈枫林, 等. 电晕笼内导线交流电晕起始电压判断方法[J]. 高电压技术, 2011, 37(1): 85-90. Chen Lan, Bian Xingming, Chen Fenglin, et al. Method to judge corona inception voltage of ac transmission lines using corona cage[J]. High Voltage Engineering, 2011, 37(1): 85-90. [23] 蒋兴良, 林锐, 胡琴, 等. 直流正极性下绞线电晕起始特性及影响因素分析[J]. 电机工程学报, 2009, 29(34): 108-114. Jiang Xingliang, Lin Rui, Hu Qin, et al. DC positive corona inception performances of stranded conductors and its affecting factors[J]. Proceedings of the CSEE, 2009, 29(34): 108-114. [24] Farzaneh M, Melo O T. Properties and effect of freezing rain and winter fog on outline insulators[J]. Cold Regions Science and Technology, 1990(19): 33-36 [25] 冯治国, 杨嘉祥, 万春, 等. 带毛刺高压导线电晕放电分析[J]. 黑龙江电力, 2009, 31(6): 441-445. Feng Zhiguo, Yang Jiaxiang, Wan Chun, et al. Corona discharge analysis on high voltage transmission line with burrs[J]. Heilongjiang Electric Power, 2009, 31(6): 441-445. [26] 梁昆淼. 数学物理方法(第三版)[M]. 北京: 高等教育出版社, 1998: 135-153.