Experimental Analysis on Corona Inception Voltage of Rod-Plane Air Gaps under DC and AC Composite Voltage
Zhang Jinglan1, Fu Yuke1, Lu Tiebing2, Qi Lei2, Bian Xingming2, Zhu Junyu1, Zhao Guoliang3, Wei Xiaoguang3
1. High Voltage and EMC Beijing Area Major Laboratory North China Electric Power University Beijing 102206 China; 2. State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 3. Global Energy Interconnection Research Institute Beijing 102200 China
Abstract:In order to obtain the corona characteristics of electrodes under AC and DC composite voltage, the test platform with series circuit was established by using a stainless rod to plane electrode. Herein, one electrode was applied with positive DC voltage, and the other one was applied with AC voltage. The corona criterion was the change of ultraviolet photon counting. The characteristics of the corona inception voltage were studied under two different voltage-applying modes, two kinds of DC polarity and two different voltage-elevating methods for the electrodes. The influence of rod radius and air gap on corona inception voltage was also investigated. It was found that, in the same atmospheric conditions and electrode arrangement, because of the influence of space charge, the corona inception voltage under voltage-applying mode, where rod electrode with positive DC and plate electrode with AC, was higher than that under the inverse mode. In the range of rod-plate air gap of 0~5cm, by the voltage-elevating method of fixed DC component, the corona inception voltage, which was obtained by the sum of DC and AC effective components under the composite voltage, increased with the increase of the DC component and decreased with the increase of the AC component by the other voltage-elevating method of fixed AC component. And the relationship between AC and DC components was linear. The results lay a solid foundation for further studies on the corona mechanism of electrodes and the accurate prediction of corona inception voltage under composite voltage.
张静岚, 符瑜科, 卢铁兵, 齐磊, 卞星明, 朱俊谕, 赵国亮, 魏晓光. 交直流复合电压下棒-板电极起晕电压实验分析[J]. 电工技术学报, 2017, 32(4): 180-188.
Zhang Jinglan, Fu Yuke, Lu Tiebing, Qi Lei, Bian Xingming, Zhu Junyu, Zhao Guoliang, Wei Xiaoguang. Experimental Analysis on Corona Inception Voltage of Rod-Plane Air Gaps under DC and AC Composite Voltage. Transactions of China Electrotechnical Society, 2017, 32(4): 180-188.
[1] Liu R. Long-distance DC electrical power trans- mission[J]. IEEE Electrical Insulation Magazine, 2013, 29(5): 37-46. [2] Cavallini A, Montanari G C, Tozzi M, et al. Diagnostic of HVDC systems using partial dis- charges[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(1): 275-284. [3] Jacob N D, McDermid W M, Kordi B. On-line monitoring of partial discharges in a HVDC station environment[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3): 925-935. [4] 马俊民, 黄永瑞, 何青连. ±800kV特高压直流输电系统谐波研究[J]. 电力系统保护与控制, 2013, 40(21): 33-37. Ma Junmin, Huang Yongrui, He Qinglian. Research on harmonics of ±800kV ultra high voltage direct current transmission system[J]. Power System Pro- tection and Control, 2013, 40(21): 33-37. [5] 陈仕龙, 束洪春, 谢静, 等. 特高压直流输电线路故障暂态信号高频特性研究[J]. 电力系统保护与控制, 2012, 39(21): 84-89. Chen Shilong, Shu Hongchun, Xie Jing, et al. High frequency characteristic analysis of fault transient signal at UHVDC transmission lines fault[J]. Power System Protection and Control, 2012, 39(21): 84-89. [6] 陈锡磊, 周浩, 王东举, 等. 向家坝—上海±800kV特高压直流工程直流滤波器过电压与绝缘配合研究[J]. 电力系统保护与控制, 2012, 39(3): 95-99. Chen Xilei, Zhou Hao, Wang Dongju, et al. Study on overvoltage and insulation coordination of DC filter for ±800kV UHVDC project from Xiangjiaba to Shanghai[J]. Power System Protection and Control, 2012, 39(3): 95-99. [7] 张俊, 李跃婷. 直流输电工程换流阀控制系统对比分析[J]. 电力系统保护与控制, 2015, 42(20): 146-149. Zhang Jun, Li Yueting. Relative analysis for valve control system in HVDC[J]. Power System Protection and Control, 2015, 42(20): 146-149. [8] 李豹, 马业林, 熊双成, 等. ±800kV特高压直流保护优化研究[J]. 电力系统保护与控制, 2015, 42(16): 71-75. Li Bao, Ma Yelin, Xiong Shuangcheng, et al. Research on optimization of ±800kV UHVDC pro- tection[J]. Power System Protection and Control, 2015, 42(16): 71-75. [9] 涂小刚, 罗海云, 程晓绚, 等. 多端柔性直流输电工程控保系统接口设计[J]. 电力系统保护与控制, 2015, 42(9): 124-128. Tu Xiaogang, Luo Haiyun, Cheng Xiaoxuan, et al. Control and protection system interface design for multi-terminal HVDC flexible project[J]. Power System Protection and Control, 2015, 42(9): 124-128. [10] Ya Azaki K, Olsen R G. Application of a corona onset criterion to calculation of corona onset voltage of stranded conductors[J]. IEEE Transactions on Dielectric and Electrical Insulation, 2004, 11(4): 674- 680. [11] Ei Bahy M M, Abounelsaad M, Abdel Gawad N, et al. Onset voltage of negative corona on stranded conductors[J]. Journal of Physics D: Applied Physics, 2007, 40(10): 3094-3101. [12] 刘云鹏, 朱雷, 律方成, 等. 特高压电晕笼直流分裂导线正极性电晕起始特性分析[J]. 电工技术学报, 2013, 28(1): 73-79. Liu Yunpeng, Zhu Lei, Lü Fangcheng, et al. Analysis of the positive corona onset characteristic of the bundle conductors in the UHV corona cage[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 73-79. [13] 欧阳科文. 直流导线电晕起晕电压的影响因素及计算方法研究[D]. 北京: 华北电力大学, 2012. [14] 刘阳, 崔翔, 卢铁兵, 等. 湿度对绞线正极性电晕电流脉冲及其无线电干扰影响的实验[J]. 电工技术学报, 2015, 30(3): 79-89. Liu Yang, Cui Xiang, Lu Tiebing, et al. Experimental investigation of humidity impact on positive corona current pulse and its radio interference of stranded conductors[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 79-89. [15] 向宇, 卢铁兵, 刘阳, 等. 用于电晕电流测量的高电位数据采集系统开发和应用[J]. 电工技术学报, 2015, 30(8): 311-315. Xiang Yu, Lu Tiebing, Liu Yang, et al. Design and application of HV-side acquisition system for corona current measurement[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 311-315. [16] 胡琴, 吴执, 舒立春, 等. 交流电场下水滴对导线电晕特性的影响[J]. 电工技术学报, 2015, 30(18): 237-245. Hu Qin, Wu Zhi, Shu Lichun, et al. The corona characteristics of the conductor attached with water drops under AC electrical field[J]. Transactions of China Electrotechnical Society, 2015, 30(18): 237- 245. [17] 王黎明, 万树伟, 卞星明, 等. 极不均匀电场中负直流电晕放电紫外特性[J]. 高电压技术, 2014, 40(6): 1614-1622. Wang Liming, Wan Shuwei, Bian Xingming, et al. Ultraviolet characteristics of negative DC corona discharge in extremely non-uniform electric field[J]. High Voltage Engineering, 2014, 40(6): 1614-1622. [18] Bian X B, Meng Xiaobo, Wang Liming, et al. Negative corona inception voltages in rod-plane gaps at various air pressures and humidities[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(2): 613-619. [19] Jiang Xingliang, Yuan Yao, Bi Maoqiang. DC positive discharge performance of rod-plane short air gap under rain conditions[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(1): 104-111. [20] 马斌, 周文俊, 汪涛, 等. 基于紫外成像技术的极不均匀电场电晕放电[J]. 高电压技术, 2006, 32(7): 13-16. Ma Bin, Zhou Wenjun, Wang Tao, et al. Corona discharge of the severe non-uniform electric field based on the UV-light imaging technology[J]. High Voltage Engineering, 2006, 32(7): 13-16. [21] 廖瑞金, 伍飞飞, 刘康淋, 等. 棒-板电极直流负电晕放电脉冲过程中的电子特性研究[J]. 电工技术学报, 2015, 30(10): 319-329. Liao Ruijin, Wu Feifei, Liu Kanglin, et al. Simulation of characteristics of electrons during a pulse cycle in bar-plate DC negative corona discharge[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(10): 319-329. [22] 律方成, 戴日俊, 王胜辉, 等. 基于紫外成像图像信息的绝缘子表面放电量化方法[J]. 电工技术学报, 2012, 27(2): 261-268. Lü Fangcheng, Dai Rijun, Wang Shenghui, et al. Study of insulator surface discharge quantification method based on ultraviolet imaging image infor- mation[J]. Transactions of China Electrotechnical Society, 2012, 27(2): 261-268. [23] 王少华, 梅冰笑, 叶自强, 等. 紫外成像检测技术及其在电气设备电晕放电检测中的应用[J]. 高压电器, 2011, 47(11): 92-97. Wang Shaohua, Mei Bingxiao, Ye Ziqiang, et al. Ultraviolet imaging detection technology and app- lication in corona discharge detection of electrical equipment[J]. High Voltage Apparatus, 2011, 47(11): 92-97. [24] 王灿林, 廖永力, 王黎明, 等. 电晕紫外光脉冲与电晕电流脉冲相关性研究[J]. 高电压技术, 2007, 33(7): 88-91. Wang Canlin, Liao Yongli, Wang Liming, et al. Relationship between the UV corona pulses and the corona current pulses[J]. High Voltage Engineering, 2007, 33(7): 88-91. [25] GB/T 2317.2—2008. 电力金具试验方法 第2部分: 电晕和无线电干扰试验[S]. [26] 郑跃胜, 何金良, 张波. 正极性电晕在空气中的起始判据[J]. 高电压技术, 2011, 37(3): 752-757. Zheng Yuesheng, He Jinliang, Zhang Bo. Onset criterion for positive corona in air[J]. High Voltage Engineering, 2011, 37(3): 752-757. [27] 杨津基. 气体放电[M]. 北京: 科学出版社, 1983. [28] Hikita M, Kato T, Okubo H. Partial discharge measurement in SF 6 and air using phase-resolved pulse height analysis[J]. IEEE Transactions on Diele- ctrics and Electrical Insulation, 1994, 1(2): 276-283. [29] Zhang C H, Mac Alpine J M K. A phase-related investigation of AC corona in air[J]. IEEE Transa- ctions on Dielectric and Electrical Insulation, 2003, 10(2): 312-319. [30] Hu Jianlin, Jiang Xingliang, Sun Caixin, et al. A comparative study on DC flashover characteristics of iced insulators with various electrical test methods[C]// International Conference on High Voltage Engin- eering and Application, Australia, 2010: 405-408. [31] Zhang Chuyan, Wan Shuwei, Wang Liming, et al. Pollution flashover performance of 220kV glass insulator strings covered with incomplete spraying PRTV coatings[C]//IEEE International Conference on Power Modulator and High Voltage, America, 2012: 443-445. [32] Qi B, Wei Z, Li C, et al. Influences of different ratios of AC-DC combined voltage on internal air-gap dis- charge in oil-pressboard insulation[J]. IEEE Transa- ctions on Power Delivery, 2016, 31(3): 1026-1033.