Abstract:Since wind power is explored on a large scale and in a highly centralized way these years, and usually wind bases are inconsistent with load in geographic region, so transmitting wind power through high-voltage transmission line will be an inevitable trend. In this new situation, the paper presents an optimal methodology for corollary thermal sources transmitted with wind power together for wind power’s variability and low energy density. For the random nature of wind power, the duration curve of spare capacity of transmission line (STC) which can be used to transmit thermal power is introduced to illustrate characteristics of capacity for thermal power after transmitting wind power. Based on the duration curve of STC, the model for optimizing the capacity of corollary thermal sources is proposed, which takes into account transmission line costs, thermal sources costs and benefit of electric power transmitted, and the objective function being maximized is the total benefits. The model can be solved by a two-stage optimal strategy. The case studies are carried out for a system, where effects of coal price and electricity price on the optimal schemes is also studied, and the results verify the effectiveness of the presented method.
[1] Valenzuela Jorge, Wang Jianhui. A probabilistic model for assessing the long-term economics of wind energy[J]. Electric Power Systems Research, 2011, 81(4): 853-861. [2] Siahkali H, Vakilian M. Stochastic unit commitment of wind farms integrated in power system[J]. Electric Power Systems Research, 2010, 80(9): 1006-1017. [3] 邓卫, 唐西胜, 裴玮, 等. 含风电微型电网电压稳定性分析及控制技术[J]. 电工技术学报, 2012, 27 (1): 56-62. Deng Wei, Tang Xisheng, Pei Wei, et al. Voltage stability and control technologies of micro-grid with wind power[J]. Transactions of China Electrotechnical Society, 2012, 27(1): 56-62. [4] 尹明, 王成山, 葛旭波, 等. 中德风电发展的比较与分析[J]. 电工技术学报, 2010, 25(9): 157-163. Yin Ming, Wang Chengshan, Ge Xubo, et al. Comparison and analysis of wind power development between China and Germany[J]. Transactions of China Electrotechnical Society, 2010, 25(9): 157-163. [5] 肖创英, 汪宁渤, 丁坤, 等. 甘肃酒泉风电功率调节方式的研究[J]. 中国电机工程学报, 2010, 30(10): 1-7. Xiao Chuangying, Wang Ningbo, Ding Kun, et al. System power regulation scheme for Jiuquan wind power base[J]. Proceedings of the CSEE, 2010, 30(10): 1-7. [6] 李东东, 陈陈. 风力发电机组动态模型研究[J]. 中国电机工程学报, 2005, 25(3): 115-119. Li Dongdong, Chen Chen. A study on dynamic model of wind turbine generator sets[J]. Proceedings of the CSEE, 2005, 25(3): 115-119. [7] 高峰, 周孝信, 朱宁辉, 等. 直驱式风电机组机电暂态建模及仿真[J]. 电网技术, 2011, 35(11): 29-34. Gao Feng, Zhou Xiaoxin, Zhu Ninghui, et al. Electromechanical transient modeling and simulation of direct-drive wind turbine system with permanent magnet synchronous generator[J]. Power System Technology, 2011, 35(11): 29-34. [8] 张帆, 李国庆, 张宇阳, 等. 双馈感应风电机组建模控制仿真[J]. 东北电力大学学报, 2011, 31(4): 80-85. Zhang Fan, Li Guoqing, Zhang Yuyang, et al. Modeling control and simulate of DFIG wind generator[J]. Journal of Northeast Dianli University, 2011, 31(4): 80-85. [9] Francois Valler, Jacques Lobry, Olivier Deblecker. System reliability assessment method for wind power integration[J]. IEEE Transactions on Power Systems, 2008, 23(3): 1288-1297. [10] Y Gao, R Billonton. Adequacy assessment of generating systems containing wind power considering wind speed correlation[J]. IET Renewable Power Generation, 2009, 3 (2): 217-226. [11] 李玉敦, 谢开贵. 含多个风电场的电力系统可靠性评估[J]. 电力科学与技术学报, 2011, 26(1): 73-77. Li Yudun, Xie Kaigui. Reliability assessment of power systems containing multiple wind farms[J]. Journal of Electric Power Science and Technology, 2011, 26 (1): 73-77. [12] Francois Bouffard, Francisco D Galiana. Stochastic security for operations planning with sugnificant wind power generation[J]. IEEE Transactions on Power Systems, 2008, 23 (2): 306-316. [13] Aidan Tuohu, Peter Meibom, Eleanor Denny, et al. Unit commitment for systems with signicant wind penetration[J]. IEEE Transactions on Power Systems, 2009, 24 (2): 592-601. [14] 江岳文, 陈冲, 温步瀛. 含风电场的电力系统机组组合问题随机模拟粒子群算法[J]. 电工技术学报, 2009, 24 (6): 129-137. Jiang Yuewen, Chen Chong, Wen Buying. Particle swarm research of stochatic simulation for unit commitment in wind farms integrated power system[J]. Transactions of China Electrotechnical Society, 2009, 24(6):129-137. [15] Billinton R, Wangdee M. Reliability-based transmission reinforcement planning associated with large-scale wind farms[J]. IEEE Transactions on Power Systems, 2007, 22(1): 34-41. [16] 吴义纯, 丁明, 李生虎. 风电场对发输电系统可靠性影响的评估[J]. 电工技术学报, 2004, 19(11): 72-76. Wu Yichun, Ding Ming, Li Shenghu. Reliability assessment of wind farms in generation and transmission systems[J]. Transactions of China Electrotechnical Society, 2004, 19(11):72-76. [17] 穆钢, 崔杨, 严干贵. 确定风电场群功率汇聚外送输电容量的静态综合优化方法[J]. 中国电机工程学报, 2011, 31(1): 15-19. Mu Gang, Cui Yang, Yan Gangui. A static optimation method to determine integrated power transmission capacity of clustering wind farms[J]. Proceedings of the CSEE, 2011, 31 (1): 15-19. [18] 刘凯. 超临界汽轮机组的发展及关键技术(二)[J]. 江苏电机工程, 2005, 24 (2): 21-25. Liu Kai. Development and key technology of supercritical steam turbine unit[J]. Jiangsu Electrical Engineering, 2005, 24 (2): 21-25. [19] WU Yaowu, Lou Suhua, Lu Siyu. A model for power system interconnection planning under low-carbon economy with CO2 emission constraints[J]. IEEE Transactions on Sustainable Energy, 2011, 2(3): 205- 214. [20] http://www.serc.gov.cn/zwgk/jggg/201111/t20111128 _15602. htm. [21] http://www.sdpc.gov.cn/zfdj/default.htm.