Bi-Level Collaborative Configuration Optimization of Integrated Community Energy System Considering Economy and Reliability
Bian Xiaoyan1, Shi Yueqi1, Pei Chuanxun2, Cui Yong3, Lin Shunfu1
1. Shanghai University of Electric Power Shanghai 200090 China; 2. State Grid Zhejiang Province Ningbo Power Supply Company Ningbo 315000 China; 3. State Grid Shanghai Municipal Electric Power Company Shanghai 200122 China
Abstract:In order to consider the economy and reliability of integrated community energy system (ICES) in planning, in traditional planning approaches, the goal of minimizing the ICES total cost under constraints of load supply reliability was achieved. But the relationship between economy and reliability of ICES was ignored in traditional approaches, which had defects that the selectivity and practicability of configuration schemes were limited, and led to problems such as excessive investment or insufficient reliability. In this paper, a bi-level multi-objective ICES optimal configuration model considering economical and reliable optimization objectives was proposed. Planning and optimal operation of ICES were combined in the model, and time sequence characteristic of equipment states transition was considered. The model was divided into two levels: in the upper level, the minimum comprehensive cost and expected energy not serve (EENS) were obtained, and the NSGA-II algorithm was applied to obtain the Pareto optimal solutions of the configuration scheme; in the lower level, the configuration scheme obtained by the upper level was converted into linear constraints, then the loss of load capacity and operation cost were minimized to achieve the optimal operation of the system. Sequential Monte Carlo simulation method was applied to quantify the reliability, then the operation cost and quantified value of reliability were fed back to the upper level. To verify the proposed ICES planning approach, the configuration optimization of a microgrid-based ICES was investigated, and the relationship between the economics and reliability of different configuration schemes was analyzed. Finally, the selectivity of multi-objective optimization schemes was realized by giving the Pareto optimal solutions.
边晓燕, 史越奇, 裴传逊, 崔勇, 林顺富. 计及经济性和可靠性因素的区域综合能源系统双层协同优化配置[J]. 电工技术学报, 2021, 36(21): 4529-4543.
Bian Xiaoyan, Shi Yueqi, Pei Chuanxun, Cui Yong, Lin Shunfu. Bi-Level Collaborative Configuration Optimization of Integrated Community Energy System Considering Economy and Reliability. Transactions of China Electrotechnical Society, 2021, 36(21): 4529-4543.
[1] 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13. Yu Xiaodan, Xu Xiandong, Chen Shuoyi, et al.A brief review to integrated energy system and energy internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 1-13. [2] Shahmohammadi A, Moradi-Dalvand M, Ghasemi H, et al.Optimal design of multicarrier energy systems considering reliability constraints[J]. IEEE Transactions on Power Delivery, 2015, 30(2): 878-886. [3] 林晓明, 张勇军, 陈伯达等. 计及多评价指标的园区能源互联网双层优化配置[J]. 电力系统自动化, 2019, 43(20): 8-15. Lin Xiaoming, Zhang Yongjun, Chen Boda, et al.Bi-level optimal configuration of park energy internet considering multiple evaluation indicators[J]. Automation of Electric Power Systems, 2019, 43(20): 8-15. [4] 张弛, 唐庆华, 严玮, 等. 基于粒子群-内点混合优化算法的区域综合能源系统可靠性评估[J]. 电力建设, 2017, 38(12): 104-111. Zhang Chi, Tang Qinghua, Yan Wei, et al.Reliability evaluation of integrated community energy system based on particle-swarm-interior-point hybrid optimization algorithm[J]. Electric Power Construction, 2017, 38(12): 104-111. [5] 马溪原, 郭晓斌, 雷金勇, 等. 面向多能互补的分布式光伏与气电混合容量规划方法[J]. 电力系统自动化, 2018, 42(4): 55-63. Ma Xiyuan, Guo Xiaobin, Lei Jinyong.Capacity planning method of distributed PV and P2G in multi-energy coupled system[J]. Automation of Electric Power Systems, 2018, 42(4): 55-63. [6] 林顺富, 刘持涛, 李东东, 等. 考虑电能交互的冷热电区域多微网系统双层多场景协同优化配置[J]. 中国电机工程学报, 2020, 40(5): 1409-1421. Lin Shunfu, Liu Chitao, Li Dongdong, et al.Bi-level multiple scenarios collaborative optimization configuration of CCHP regional multi-microgrid system considering power interaction among microgrids[J]. Proceedings of the CSEE, 2020, 40(5): 1409-1421. [7] Wang Yi, Zhang Ning, Zhuo Zhenyu, et al.Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch[J]. Applied Energy, 2018, 210: 1141-1150. [8] Huang Wujing, Zhang Ning, Yang Jingwei, et al.Optimal configuration planning of multi-energy systems considering distributed renewable energy[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 1452-1464. [9] 周长城, 马溪原, 郭祚刚, 等. 面向工程应用的用户级综合能源系统规划[J]. 电工技术学报, 2020, 35(13): 2843-2854. Zhou Changcheng, Ma Xiyuan, Guo Zuogang, et al.User-level integrated energy system planning for engineering applications[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2843-2854. [10] 刘维康, 王丹, 余晓丹, 等. 考虑电气转换储能和可再生能源集成的微能源网多目标规划[J]. 电力系统自动化, 2018, 42(16): 11-20. Liu Weikang, Wang Dan, Yu Xiaodan, et al.Multi-objective planning of micro energy network considering P2G-based storage system and renewable energy integration[J]. Automation of Electric Power Systems, 2018, 42(16): 11-20. [11] Mavromatidis G, Orehounig K, Carmeliet J.Design of distributed energy systems under uncertainty: a two-stage stochastic programming approach[J]. Applied Energy, 2018, 222: 932-950. [12] 李更丰, 别朝红, 王睿豪, 等. 综合能源系统可靠性评估的研究现状及展望[J]. 高电压技术, 2017, 43(1): 114-121. Li Gengfeng, Bie Zhaohong, Wang Ruihao, et al.Research status and prospects on reliability evaluation of integrated energy system[J]. High Voltage Engineering, 2017, 43(1): 114-121. [13] 倪伟, 吕林, 向月, 等. 基于马尔可夫过程蒙特卡洛法的综合能源系统可靠性评估[J]. 电网技术, 2020, 44(1): 150-158. Ni Wei, Lü Lin, Xiang Yue, et al.Reliability evaluation of integrated energy system based on Markov process Monte Carlo method[J]. Power System Technology, 2020, 44(1): 150-158. [14] 孙强, 高松, 谢典, 等. 协调可靠性与经济性的园区综合能源系统优化规划[J]. 电力系统及其自动化学报, 2020, 32(4): 76-82. Sun Qiang, Gao Song, Xie Dian, et al.Optimum planning for integrated community energy system with coordination of reliability and economy[J]. Proceedings of the CSU-EPSA, 2020, 32(4): 76-82. [15] 石文辉, 别朝红, 王锡凡. 大型电力系统可靠性评估中的马尔可夫链蒙特卡洛方法[J]. 中国电机工程学报, 2008, 28(4): 9-15. Shi Wenhui, Bie Zhaohong, Wang Xifan.Applications of Markov chain Monte Carlo in large-scale system reliability evaluation[J]. Proceedings of the CSEE, 2008, 28(4): 9-15. [16] Gonzalez-Fernandez R A, Leite Da Silva A M. Reliability assessment of time-dependent systems via sequential cross-entropy Monte Carlo simulation[J]. IEEE Transactions on Power Systems, 2011, 26(4): 2381-2389. [17] 汪海瑛, 白晓民, 许婧. 考虑风光储协调运行的可靠性评估[J]. 中国电机工程学报, 2012, 32(13): 13-20. Wang Haiying, Bai Xiaomin, Xu Jing.Reliability assessment considering the coordination of wind power, solar energy and energy storage[J]. Proceedings of the CSEE, 2012, 32(13): 13-20. [18] González-Fernández R A, Oviedo-Sanabria R E, Da Silva A M, et al. Generating capacity reliability assessment of the Itaipu hydroelectric plant via sequential Monte Carlo simulation[C]//2014 Power Systems Computation Conference, 2014: 1-7. [19] 李江, 刘伟波, 李国庆, 等. 基于序贯蒙特卡洛法的直流配电网可靠性评估与预测[J]. 太阳能学报, 2018, 39(1): 154-162. Li Jiang, Liu Weibo, Li Guoqing, et al.DC distribution networks reliability evaluation and prediction based on sequential Monte Carlo method[J]. Acta Energiae Solaris Sinica, 2018, 39(1): 154-162. [20] 李振坤, 李一骄, 张代红, 等. 储能设备对有源配电网供电可靠性的影响分析及优化配置[J]. 电网技术, 2018, 42(11): 3676-3683. Li Zhenkun, Li Yijiao, Zhang Daihong, et al.Influence analysis of energy storage device on reliability of distribution network and its optimal allocation[J]. Power System Technology, 2018, 42(11): 3676-3683. [21] 丁明, 胡迪, 毕锐, 等. 含高渗透率可再生能源的配电网可靠性分析[J]. 太阳能学报, 2020, 41(2): 194-202. Ding Ming, Hu Di, Bi Rui, et al.Reliability analysis of distribution system containing high penetration renewable energy[J]. Acta Energiae Solaris Sinica, 2020, 41(2): 194-202. [22] 吴福保, 刘晓峰, 孙谊前, 等. 基于冷热电联供的多园区博弈优化策略[J]. 电力系统自动化, 2018, 42(13): 68-74. Wu Fubao, Liu Xiaofeng, Sun Yiqian, et al.Game optimization strategy for multiple parks based on combined cooling heating and power[J]. Automation of Electric Power Systems, 2018, 42(13): 68-74. [23] 马腾飞, 吴俊勇, 郝亮亮, 等. 基于能源集线器的微能源网能量流建模及优化运行分析[J]. 电网技术, 2018, 42(1): 179-186. Ma Tengfei, Wu Junyong, Hao Liangliang, et al.Energy flow modeling and optimal operation analysis of micro energy grid based on energy hub[J]. Power System Technology, 2018, 42(1): 179-186. [24] 王祺, 王承民, 谢宁, 等. 混合CVaR-IGDT的区域综合能源系统扩展规划模型[J]. 电网技术, 2020, 44(2): 505-513. Wang Qi, Wang Chengmin, Xie Ning, et al.A hybrid CVaR-IGDT expansion planning model for regional integrated energy system[J]. Power System Technology, 2020, 44(2): 505-513. [25] 张雨曼, 刘学智, 严正, 等. 光伏-储能-热电联产综合能源系统分解协调优化运行研究[J]. 电工技术学报, 2020, 35(11): 2372-2386. Zhang Yuman, Liu Xuezhi, Yan Zheng, et al.Decomposition-coordination based optimization for PV-BESS-CHP integrated energy systems[J]. Transactions of China Electrotechnical Society, 2020, 35(11): 2372-2386. [26] 尹斌鑫, 苗世洪, 李姚旺, 等. 先进绝热压缩空气储能在综合能源系统中的经济性分析方法[J]. 电工技术学报, 2020, 35(19): 4062-4075. Yin Binxin, Miao Shihong, Li Yaowang, et al.Study on the economic analysis method of advanced adiabatic compressed air energy storage in integrated energy system[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4062-4075. [27] 刁涵彬, 李培强, 王继飞, 等. 考虑电/热储能互补协调的综合能源系统优化调度[J]. 电工技术学报, 2020, 35(21): 4532-4543. Diao Hanbin, Li Peiqiang, Wang Jifei, et al.Optimal dispatch of integrated energy system considering complementary coordination of electric/thermal energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4532-4543. [28] 刁涵彬, 李培强, 吕小秀, 等. 考虑多元储能差异性的区域综合能源系统储能协同优化配置[J]. 电工技术学报, 2021, 36(1): 151-165. Diao Hanbin, Li Peiqiang, Lü Xiaoxiu, et al.Coordinated optimal allocation of energy storage in regional integrated energy system considering the diversity of multi-energy storage[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 151-165. [29] 李谦. 计及极端天气与风电接入的系统运行风险评估[D]. 济南: 山东大学, 2015. [30] 肖白, 郭蓓. 配电网规划研究综述与展望[J]. 电力自动化设备, 2018, 28(12): 200-217. Xiao Bai, Guo Bei.Review and prospect of distribution network planning[J]. Electric Power Automation Equipment, 2018, 28(12): 200-217.