Abstract:A control method based on Lyapunov theory is proposed in this paper in the purpose of ensure the stability operation of the active power filter (APF) under the influence of varying load and system parameters. State equations are constructed by using the tracking error of the compensate current and direct current (DC) capacitor voltage as state vectors and output vectors while the duty ratio of the voltage source inverter (VSI) switching as the input vector. With the state vectors constructing the energetic like Lyapunov function, the input vectors could be determined and thus adapt to the variation, ensuring the convergence of the control process. Considering that the time-varying load may cause significant fluctuations in DC capacitor voltage, an average value of DC capacitor voltage is used in calculation of the control output. The relationship between system parameters and performance is then analyzed to determine the value ranges of system parameters. Rectifier load and DC speed regulating system are tested via Matlab/Simulink. As the results show, the proposed method operates steadily under the conditions of varying load and system parameters, which thus verifies the utility and reliability of the proposed control method.
李兰芳, 杨洪耕, 郭卫明, 刘亚梅. 基于李亚普诺夫方法的有源电力滤波器电流稳定控制[J]. 电工技术学报, 2012, 27(9): 78-86.
Li Lanfang, Yang Honggeng, Guo Weiming, Liu Yamei. Lyapunov-Based Current Stability Control Method of Active Power Filter. Transactions of China Electrotechnical Society, 2012, 27(9): 78-86.
[1] Lascu C, Asiminoaei L, Boldea I, et al. High performance current controller for selective harmonic compensation in active power filters[J]. IEEE Transactions on Power Electronics, 2007, 22(5): 1826-1835. [2] Singh B, Vernia V, Solanki J. Neural network-based selective compensation of current quality problems in distribution system[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 53-60. [3] Kömürcügil Hasan, Kükrer Ösman. A new control strategy for single-phase shunt active power filters using a Lyapunov function[J]. IEEE Transactions on Industrial Electronics, 2006, 53(1): 305-312. [4] Magoarou F Le, Monteil F. Influence of the load characteristics and the line impedance on the stability of an active power filter[C]. Fifth International Conference on Power Electronics and Variable-Speed Drives, London, England, 1994, 339: 175-180. [5] Sedighy Mohammad, Dewan Shashi B, Dawson Francis P. A robust digital current control method for active power filters[J]. IEEE Transactions on Industry Applications, 2000, 36(4): 1158-1164. [6] Stankovi A M, Escobar G, Mattavelli P. Passivity- based controller for harmonic compensation in distribution lines with nonlinear loads[C]. Proceedings of IEEE Conference on Power Electronics Specialists, Galway, Ireland, 2000: 1143-1148. [7] 薛花, 姜建国. 并联型有源电力滤波器的自适应无源性控制方法研究[J]. 中国电机工程学报, 2007, 27(25): 114-118. Xue Hua, Jiang Jianguo. Study on adaptive passivity- based control strategies of shunt active filters[J]. Proceedings of the CSEE, 2007, 27(25): 114-118. [8] 张振环, 刘会金. 单相有源电力滤波器L2增益重复控制新方法[J]. 中国电机工程学报, 2008, 28(12): 79-87. Zhang Zhenhuan, Liu Huijin. A novel L2-gain repetitive control algorithm for single-phase active power filter[J]. Proceedings of the CSEE, 2008, 28(12): 79-87. [9] 王宝华. 逆推自适应滑模励磁控制器设计[J]. 电力自动化设备, 2009, 29(6): 54-57. Wang Baohua. Design of backstepping adaptive sliding mode excitation controller[J]. Electric Power Automation Equipment, 2009, 29(6): 54-57. [10] 倪雨, 许建平, 王金平, 等. 滞环调制全局滑模控制Buck 变换器设计[J]. 中国电机工程学报, 2010, 30(21): 1-6. Ni Yu, Xu Jianping, Wang Jinping, et al. Design of global sliding mode control buck converter with hysteresis modulation[J]. Proceedings of the CSEE, 2010, 30(21): 1-6. [11] 郭伟峰, 武健, 徐殿国, 等. 新型滑模控制的并联混合有源电力滤波器[J]. 中国电机工程学报, 2009, 29(27): 29-35. Guo Weifeng, Wu Jian, Xu Dianguo, et al. Hybrid shunt active power filter based on novel sliding mode control[J]. Proceedings of the CSEE, 2009, 29(27): 29-35. [12] 张昌凡, 王耀南. 滑模变结构的智能控制及其应用[J]. 中国电机工程学报, 2001, 21(3): 27-29. Zhang Changfan, Wang Yaonan. An intelligent control using sliding mode variable structure and its application[J]. Proceedings of the CSEE, 2001, 21(3): 27-29. [13] Chaer Toufic Al, Gaubert Jean-Paul, Rambault Laurent, et al. Linear feedback control of a parallel active harmonic conditioner in power systems[J]. IEEE Transactions on Power Electronics, 2009, 24(3): 641-653. [14] 徐金富, 张振环, 刘会金, 等 基于双环控制思路的有源电力滤波器H∞控制[J]. 电力自动化设备, 2009, 29(12): 41-47. Xu Jinfu, Zhang Zhenhuan, Liu Huijin, et al. H∞control strategy of active power filter based on dual-loop theory[J]. Electric Power Automation Equipment, 2009, 29(12): 41-47. [15] 于长官. 现代控制理论及应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2004. [16] 于晶荣, 滕召胜, 章兢, 等. 有源电力滤波器预测电流控制及稳定性分析[J]. 电工技术学报, 2009, 24(7): 164-170. Yu Jingrong, Teng Zhaosheng, Zhang Jing, et al. Predictive current control and stability analysis of active power filter[J]. Transactions of China Electrotechnical Society, 2009, 24(7): 164-170. [17] 孙元章, 赵枚, 黎雄, 等. STATCOM控制的电力系统稳定性分析[J]. 电力系统自动化, 2001, 25(11): 1-5. Sun Yuanzhang, Zhao Mei, Li Xiong, et al. Transient stability analysis for power system with STATCOM[J]. Automation of Electric Power Systems, 2001, 25(11): 1-5. [18] 郭晓云, 刘会金, 曹玉胜. 基于切换仿射线性模型的三相APF电流控制方法[J]. 中国电机工程学报. 2011, 31(4): 59-66. Guo Xiaoyun, Liu Huijin, Cao Yusheng. A novel current control method for three-phase APF based on switched affine model[J]. Proceedings of the CSEE, 2011, 31(4): 59-66. [19] 侯世英, 曾建兴, 孙韬, 等. 基于李亚普诺夫稳定性分析的APF新型控制策略[J]. 电力自动化设备, 2010, 30(10): 33-37. Hou Shiying, Zeng Jianxing, Sun Tao, et al. APF control strategy based on Lyapunov stability analysis[J]. Electric Power Automation Equipment, 2010, 30(10): 33-37.