Abstract:According to quasi-steady-state model, the coordinated voltage control problem is represented by an optimization model subjected to differential-algebraic equations(DAEs) with continuous-discrete time variables. A direct dynamic optimization approach is employed to obtain the solution of the DAEs optimization problem. The dynamic optimization problem can be converted to a nonlinear programming by approximating state variable, algebraic variable and control variable profiles by a family of polynomials on finite time intervals using Radau collocation method. An enhanced primal-dual interior point strategy is applied to solve this nonlinear programming model. Line search filter method is proposed in the context of the interior point method to solve the nonlinear programming model. Line search filter based interior point method has better convergence properties and can give the optimal solution quickly. The simulation results on IEEE 17-machine 162-bus system show that the proposed approach can determine effective control to enhance long-term voltage stability of power systems.
郑文杰, 刘明波. 应用线搜索滤波器内点法求解最优协调电压控制问题[J]. 电工技术学报, 2012, 27(9): 70-77.
Zheng Wenjie, Liu Mingbo. Solution of Optimal Coordinated Voltage Control Using Line Search Filter Interior Point Method. Transactions of China Electrotechnical Society, 2012, 27(9): 70-77.
[1] 郑文杰, 刘明波. 最优协调电压控制准稳态模型及其直接动态优化方法[J]. 中国电机工程学报, 2009, 29(31): 53-59. Zheng Wenjie, Liu Mingbo. Quasi steady-state model of optimal coordinated voltage control and its direct dynamic optimization approach[J]. Proceedings of the CSEE, 2009, 29(31): 53-59 [2] Hairer E, Nørsett S P, Wanner G. Solving ordinary differential equations Ⅱ: stiff and differential- algebraic problems[M]. 北京: 科学出版社, 2006. [3] Wächter A, Biegler L T. Global and local convergence of line search filter methods for nonlinear programming[R]. Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 2001. [4] Fletcher R, Leyffer S. Nonlinear programming without a penalty function[J]. Mathematical Programming, 2002, 91(1): 239-269. [5] Surry P D, Radcliffe N J, Boyd I D. A multi-objective approach to constrained optimization of gas supply networks: the COMOGA method[M]. Lecture Notes In Computer Science, Berlin, Springer Verlag , 1995, 993: 166-180. [6] Lemar´echal C, Nemirovskii A, Nesterov Y. New variants of bundle methods[J]. Mathematical Programming, 1995, 69(1): 111-147. [7] Fletcher R, Gould N I M, Leyffer S, et al. Global convergence of a trust-region SQP filter algorithm for general nonlinear programming[J]. SIAM Journal on Optimization, 2002, 13(3): 635-659. [8] Ulbrich M, Ulbrich S, Vicente L N. A globally convergent primal-dual interior-point filter method for nonlinear programming[J]. Mathematical Prog- ramming, 2004, 100(2): 379-410. [9] Fletcher R, Leyffer, Toint P L. On the global convergence of a filter-SQP algorithm[J]. SIAM Journal on Optimization, 2002, 13(1): 44-59. [10] Conn A R, Gould N I M, Orban D, et al. A primal-dual trust-region algorithm for non-convex nonlinear programming[J]. Mathematical Programming, 2000, 87(2): 215-249 [11] Byrd R H, Liu G, Nocedal J. On the local behavior of an interior point method for nonlinear programming. Numerical Analysis, Reading, MA, USA: Wesley Longman, 1997. [12] Liu Mingbo, Tso S K, Cheng Ying.An extended nonlinear primal-dual interior-point algorithm for reactive-power optimization of large-scale power systems with discrete control variables[J]. IEEE Transactions on Power Systems, 2002, 17(4): 982-991. [13] 程莹, 刘明波.含离散控制变量的大规模电力系统无功优化[J]. 中国电机工程学报, 2002, 22(5): 54-60. Cheng Ying, Liu Mingbo. Reactive-power optimization of large-scale power systems with discrete control variables[J]. Proceedings of the CSEE, 2002, 22(5): 54-60. [14] Jabr R A, Coonick A H, Cory B J. A primal-dual interior point method for optimal power flow dispatching[J]. IEEE Transactions on Power Systems, 2002, 17(3): 654-662. [15] Benson H Y, Shanno D F. Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts[J]. Computational Optimization and Applications, 2000, 40(2): 143-189. [16] Curtis F, Nocedal J. Steplength selection in interior-point methods for Quadratic programming[J]. Applied Math Letters, 2007, 20(5): 516-523. [17] Nocedal J, Waechter A, Waltz R. Adaptive barrier update strategies for nonlinear interior methods[J]. SIAM Journal on Optimization, 2009, 19 (4): 1674-1693. [18] Lage G G, de Sousa V A, da Costa G R M. Optimal power flow solution using the penalty/modified barrier method[C]. IEEE Bucharest Power Tech Conference, 2009: 1-6. [19] Torres G L. Nonlinear optimal power flow by interior and non-interior point methods[D]. Waterloo: University of Waterloo, 1998.