Abstract:An improved reduced-dimension interior point method is proposed for transient stability constrained optimal power flow (TSCOPF) in this paper. The two groups of differentiated implicit recursive equations of motion of the rotor are eliminated to be one set of equations through recursive features. Considering the truncation error of specific numerical integration algorithm, the transient differential equations are dispersed to inequality constraints instead of equality constraints. The method can reduce the number of the equality constraints and variables and the dimensions of the correction equation, improve the computational efficiency and reduce the memory usage. Numerical simulations on the three test systems, from 22 to118 buses, show that the proposed method is robust and efficient.
夏小琴, 韦化, 阳育德. 暂态稳定约束最优潮流的改进降阶内点算法[J]. 电工技术学报, 2012, 27(9): 87-92.
Xia Xiaoqin, Wei Hua, Yang Yude. An Improved Reduced-Dimension Interior Point Method for Transient Stability Constrained Optimal Power Flow. Transactions of China Electrotechnical Society, 2012, 27(9): 87-92.
[1] 黄学良, 刘志仁, 祝瑞金, 等. 大容量变速恒频风电机组接入对电网运行的影响分析[J]. 电工技术学报, 2010, 25(4): 142-149. Huang Xueliang, Liu Zhiren, Zhu Ruijin, et al. Impact of power system integrated with large capacity of variable speed constant frequency wind turbines[J]. Transactions of China Electrotechnical Society, 2010, 25(4): 142-149. [2] 薛禹胜. 电力系统暂态稳定快速分析和控制的现状和发展[J]. 电力系统自动化, 1995, 19(1): 6-13. Xue Yusheng. Fast assessment and control of transient stability-status and development[J]. Automation of Electric Power System, 1995, 19(1): 6-13. [3] 刘怀东, 唐晓玲, 高天亮, 等. 基于机组同调性的电力系统动态安全域改进解析法[J]. 电工技术学报, 2008, 23(4): 112-118. Liu Huaidong, Tang Xiaoling, Gao Tianliang, et al. An improved analytical method for determing dynamic security region of electrical power systems based on generator coherency[J]. Transactions of China Electrotechnical Society, 2008, 23(4): 112-118. [4] Deqiang Gan, Robert J Thomas, Ray D Zimmerman. Stability-constrained optimal power flow[J]. IEEE Transactions on Power Systems, 2002, 15(2): 535-540. [5] 袁越, 久保川淳司, 佐佐木博司, 等. 基于内点法的含暂态稳定约束的最优潮流计算[J]. 电力系统自动化, 2002, 26(13): 14-19. Yuan Yue, J Kubokawa, H Sasaki, et al. Interior point method based optimal power flow with transient stability constraints[J]. Automation of Electric Power System, 2002, 26(13): 14-19. [6] 韦化, 阳育德, 李啸骢. 多预想故障暂态稳定约束最优潮流[J]. 中国电机工程学报, 2004, 24(10): 91-96. Wei Hua, Yang Yude, Li Xiaocong. Optimal power flow with multi-contingencies transient stability constrained[J]. Proceedings of the CSEE, 2004, 24(10): 91-96. [7] Quanyuan Jiang, Guangchao Geng. A reduced-space interior point method for stability constrained optimal power flow transient[J]. IEEE Transactions on Power Systems, 2010, 25(3): 1232-1240. [8] 王俊, 蔡兴国. 基于差分进化算法的动态可用输电能力计算研究[J]. 电力系统保护与控制, 2010, 38(4): 39-44. Wang Jun, Cai Xingguo. Study of calculating the dynamic available transfer capability with the differential evolution algorithm[J]. Power System Protection and Control, 2010, 38(4): 39-44. [9] Luonan Chen, Yasuyuki Tada, Hiroshi Okamoto, et al. Optimal operation solutions of power systems with transient stability constraints[J]. IEEE Transactions on Circuits and Systems, 2001, 48(3): 327-339. [10] Y Xia, K W Chan, M Liu. Direct nonlinear primal- dual interior point method for transient stability constrained optimal power flow[C]. IEE Proceedings of Generation Transmission and Distribution, 2005, 152(1), 11-16. [11] 杨新林, 孙元章, 王海风. 考虑暂态稳定性约束的最优潮流[J]. 电力系统自动化, 2003, 27(14): 13-17. Yang Xinlin, Sun Yuanzhang, Wang Haifeng. A new approach for optimal power flow with transient stability constrains[J]. Automation of Electric Power System, 2003, 27(14): 13-17. [12] 孙景强, 房大中, 锺德成. 暂态稳定约束下的最优潮流[J]. 中国电机工程学报, 2005, 25 (12): 12-17. Sun Jingqiang, Fang Dazhong, T S Chung. Optimal power flow with transient stability constrained[J]. Proceedings of the CSEE, 2005, 25(12): 12-17. [13] 刘明波, 李妍红, 陈家荣. 基于轨迹灵敏度的暂态稳定约束最优潮流计算[J]. 电力系统及其自动化学报, 2007, 19(6): 24-29. Liu Mingbo, Li Yanhong, Chan K W. Transient stability constrained optimal power flow using trajectory sensitivities[J]. Proceedings of the CSU-EPSA, 2007, 19(6): 24-29. [14] H R Cai, C Y Chung, K P Wong. Application of differential evolution algorithm for transient stability constrained optimal power flow[J]. IEEE Transactions on Power Systems, 2008, 23(2): 719-728. [15] Rafael Zárate-Miñano, Thierry Van Cutsem, Federico Milano, et al. Securing transient stability using time-domain simulations within an optimal power flow[J]. IEEE Transactions on Power Systems, 2010, 25(1): 243-253. [16] Quanyuan Jiang, Zhiguang Huang. An enhanced numerical discretization method for transient stability constrained optimal power flow[J]. IEEE Transactions on Power Systems, 2010, 25(4): 1790-1797. [17] 黄玉龙, 刘明波. 基于单机无穷大母线等值和轨迹灵敏度的暂态稳定约束最优潮流[J]. 中国电机工程学报, 2011, 31(13): 86-93. Huang Yulong, Liu Mingbo. Transient stability constrained optimal power flow based on OMIB equivalent and trajectory sensitivity[J]. Proceedings of the CSEE, 2011, 31(13): 86-93. [18] Hua Wei, H Sasaki, J Kubokawa, et al. An interior point nonlinear programming for optimal power flow problems with a novel data structure[J]. IEEE Transactions on Power Systems, 1998, 3(3): 870-877.