Impedance Modeling and Stability Analysis of Grid-Forming Static Var Generator for Renewable Energy Power Plants
Zhao Lixuan, Chen Xin, Zhang Donghui
Jiangsu Key Laboratory of New Energy Generation and Power Conversion College of Automation Engineering Nanjing University of Aeronautics and Astronautics Nanjing 211106
Abstract:To enhance grid-connected system voltage support and oscillation suppression capability, new energy power plants are equipped with static var generator (SVG) as a reactive power compensation device. Under the background of widespread deployment of reactive power compensation devices in new energy power stations, grid-forming (GFM) SVG demonstrate superior grid adaptability compared to traditional grid-following (GFL) SVG and synchronous condenser (SC), owing to their self-synchronizing characteristics, second-level dynamic response, and transient support capability. However, current research on the impact of GFM SVG on the stability of new energy power plants is still at an exploratory stage. In particular, the impedance modeling of GFM SVG and the analysis of its influence mechanisms on the stability of new energy power plants still require further in-depth studies. To address the aforementioned issues, this paper establishes the impedance characteristic model of GFM SVG and constructs the aggregated impedance of wind farms after GFM SVG integration. It compares the frequency characteristics between grid-forming and grid-following SVGs, and conducts a quantitative analysis of the influence mechanisms of GFM SVG’s key control parameters on the stability of new energy power plants. First, a multi-harmonic linearization modeling approach is adopted to derive harmonic small-signal mathematical expressions introduced by the power circuit and control loops of GFM SVG. Based on this, the sequence impedance model of GFM SVG is established. Furthermore, a detailed comparative analysis of impedance characteristics between GFM SVG and GFL SVG is conducted. The analytical results demonstrate that the grid-forming control significantly enhances the amplitude of SVG impedance characteristics in both low-frequency and high-frequency ranges. Additionally, grid-forming control improves the negative damping characteristics in sub/super-synchronous frequency bands of impedance, thereby reducing the risk of grid-connected oscillation. To quantitatively evaluate the impact of GFM SVG on wind farm stability, this study employs an impedance aggregation method to establish an aggregated impedance model of a wind farm with transmission lines and transformers after GFM SVG integration, using a wind farm in the Hami region as a case study. A comparative analysis is conducted on the aggregated impedance models of wind farms integrated with GFM SVG, GFL SVG, and SCs under three different grid connection scenarios, the stability analysis results demonstrate that: The integration of GFM SVG into wind farms can effectively narrow the negative damping region of the aggregated wind farm impedance while avoiding the introduction of additional impedance crossover points, thereby enhancing the grid-connected stability of new energy power plants. Building on this foundation, the study conducts an in-depth analysis of the impact mechanisms of grid-forming SVG’s key control parameters (including the DC voltage frequency modulation coefficient, reactive voltage inertia coefficient, and virtual impedance) on the aggregated impedance of SVG-integrated wind farms and their grid-connected stability. Furthermore, the stability boundaries for the DC voltage frequency modulation coefficient and reactive voltage inertia coefficient in wind farm grid-connected systems are established quantitatively, proposing systematic parameter optimization methodologies. Finally, the impact of transmission line parameters on grid-connected system stability is analyzed. Short-circuit ratio improvement percentage (α ) is defined to quantify the improvement in the adaptability of the weak grid after integrating different reactive power compensation devices into new energy power plants. Compared to GFL SVG, wind farms integrated with GFM SVG exhibit significantly enhanced weak grid adaptability and damping effects comparable to synchronous condensers.
赵力轩, 陈新, 张东辉. 面向新能源场站的构网型静止无功发生器阻抗建模及稳定性分析[J]. 电工技术学报, 2026, 41(3): 849-864.
Zhao Lixuan, Chen Xin, Zhang Donghui. Impedance Modeling and Stability Analysis of Grid-Forming Static Var Generator for Renewable Energy Power Plants. Transactions of China Electrotechnical Society, 2026, 41(3): 849-864.
[1] 周孝信, 赵强, 张玉琼. “双碳”目标下我国能源电力系统发展前景[J]. 科学通报, 2024, 69(8): 983-989. Zhou Xiaoxin, Zhao Qiang, Zhang Yuqiong.Prospect of China’s energy and power system under dual carbon goals[J]. Chinese Science Bulletin, 2024, 69(8): 983-989. [2] 汤广福, 周静, 庞辉, 等. 能源安全格局下新型电力系统发展战略框架[J]. 中国工程科学, 2023, 25(2): 79-88. Tang Guangfu, Zhou Jing, Pang Hui, et al.Strategic framework for new electric power system develop-ment under the energy security pattern[J]. Strategic Study of CAE, 2023, 25(2): 79-88. [3] Zhou Yuhan, Xin Huanhai, Wu Di, et al.Small-signal stability assessment of heterogeneous grid-following converter power systems based on grid strength analysis[J]. IEEE Transactions on Power Systems, 2023, 38(3): 2566-2579. [4] 王杨, 梁智昊, 王翰文, 等. 基于谐波状态空间的电力系统多类型谐波扰动建模与分析——回顾、探讨与展望[J]. 电力系统自动化, 2025, 49(23): 1-16. Wang Yang, Liang Zhihao, Wang Hanwen, et al.Modeling and analysis of multi-type harmonic distur-bances in power system based on harmonic state space: review, discussion, and prospect[J]. Automation of Electric Power Systems, 2025, 49(23): 1-16. [5] 黄萌, 舒思睿, 李锡林, 等. 面向同步稳定性的电力电子并网变流器分析与控制研究综述[J]. 电工技术学报, 2024, 39(19): 5978-5994. Huang Meng, Shu Sirui, Li Xilin, et al.A review of synchronization-stability-oriented analysis and control of power electronic grid-connected converters[J]. Transactions of China Electrotechnical Society, 2024, 39(19): 5978-5994. [6] 孙鹏伟, 姚文峰, 黄东启, 等. STATCOM与新型调相机的技术性和经济性比较[J]. 南方电网技术, 2021, 15(1): 82-88. Sun Pengwei, Yao Wenfeng, Huang Dongqi, et al.Technical and economic comparison between STATCOM and the new generation sychronous condenser[J]. Southern Power System Technology, 2021, 15(1): 82-88. [7] 张旭, 徐鑫, 董成武, 等. 基于EMD-KPCA-LSTM与SVG控制的双馈风电系统次同步振荡抑制方法[J]. 电气工程学报, 2025, 20(2): 54-67. Zhang Xu, Xu Xin, Dong Chengwu, et al.Sub-synchronous oscillation suppression method for DFIG wind power systems based on EMD-KPCA-LSTM and SVG damping control[J]. Journal of Electrical Engineering, 2025, 20(2): 54-67. [8] 张前进, 周林, 李海啸, 等. 考虑SVG补偿装置的大型光伏并网系统振荡分析与抑制[J]. 中国电机工程学报, 2019, 39(9): 2636-2644. Zhang Qianjin, Zhou Lin, Li Haixiao, et al.Oscillation analysis and suppression of large-scale grid-connected photovoltaic system considering SVG equipment[J]. Proceedings of the CSEE, 2019, 39(9): 2636-2644. [9] 胡鹏, 艾欣, 肖仕武, 等. 静止无功发生器序阻抗建模及对次同步振荡影响因素的分析[J]. 电工技术学报, 2020, 35(17): 3703-3713. Hu Peng, Ai Xin, Xiao Shiwu, et al.Sequence impedance of static var generator and analysis of influencing factors on subsynchronous oscillation[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3703-3713. [10] 张旸, 孙龙庭, 陈新, 等. 集成静止无功发生装置的直驱风场序阻抗网络模型与稳定性分析[J]. 中国电机工程学报, 2020, 40(9): 2877-2891. Zhang Yang, Sun Longting, Chen Xin, et al.Sequence impedance network model and stability analysis for direct-drive wind farm with static var generator[J]. Proceedings of the CSEE, 2020, 40(9): 2877-2891. [11] Zhang Yang, Yang Yongheng, Chen Xin, et al.Intelligent parameter design-based impedance optimiza-tion of STATCOM to mitigate resonance in wind farms[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(3): 3201-3215. [12] 熊连松, 卓放, 刘小康, 等. 静止同步补偿器抑制电网功率振荡的机理研究[J]. 西安交通大学学报, 2017, 51(12): 112-120. Xiong Liansong, Zhuo Fang, Liu Xiaokang, et al.Analysis on mechanism of power oscillation mitiga-tion by STATCOM[J]. Journal of Xi’an Jiaotong University, 2017, 51(12): 112-120. [13] 龚鸿, 江伟, 王渝红, 等. 基于静止同步补偿器与直流调制协调控制的低频振荡抑制方法[J]. 电工技术学报, 2017, 32(6): 67-75. Gong Hong, Jiang Wei, Wang Yuhong, et al.A survey on damping low frequency oscillation based on coordination strategy of static synchronized com-pensator modulation[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 67-75. [14] 张东辉, 陈新, 杨舒婷, 等. 含静止无功补偿装置的光伏电站高频谐振分析及抑制策略研究[J]. 中国电机工程学报, 2023, 43(24): 9580-9594. Zhang Donghui, Chen Xin, Yang Shuting, et al.Analysis of high-frequency resonance and suppres-sion strategy of photovoltaic power plant with static reactive power compensation device[J]. Proceedings of the CSEE, 2023, 43(24): 9580-9594. [15] Zhang Yang, Wang Yuqing, Zhang Donghui, et al.Broadband impedance shaping control scheme of MMC-based STATCOM for improving the stability of the wind farm[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 10278-10292. [16] 高本锋, 刘培鑫, 孙大卫, 等. 构网/跟网型混合风电场次同步振荡特性与机理分析[J]. 电工技术学报, 2025, 40(6): 1945-1959. Gao Benfeng, Liu Peixin, Sun Dawei, et al.Analysis of subsynchronous oscillation characteristics and mechanism of grid-forming/grid-following hybrid wind farms[J]. Transactions of China Electrotechnical Society, 2025, 40(6): 1945-1959. [17] 马富艺龙, 辛焕海, 李知艺, 等. 多馈入系统中变流器多样性对系统强度的影响分析[J]. 电工技术学报, 2025, 40(23): 7590-7607. Ma Fuyilong, Xin Huanhai, Li Zhiyi, et al.Impact analysis of converter diversity on system strength in multi-infeed power system[J]. Transactions of China Electrotechnical Society, 2025, 40(23): 7590-7607. [18] 唐宇, 胡光, 刘永江, 等. 基于特征子系统的跟网/构网设备混合外送系统小干扰稳定性分析方法[J]. 电工技术学报, 2025, 40(9): 2766-2779. Tang Yu, Hu Guang, Liu Yongjiang, et al.Small-signal stability analysis method for hybrid grid-following/grid-forming delivery systems based on eigen-subsystem[J]. Transactions of China Electro-technical Society, 2025, 40(9): 2766-2779. [19] 刘旭, 张国驹, 裴玮, 等. 构网型变流器的现状与发展趋势[J]. 太阳能学报, 2024, 45(9): 101-111. Liu Xu, Zhang Guoju, Pei Wei, et al.Current status and development trends of grid type converters[J]. Acta Energiae Solaris Sinica, 2024, 45(9): 101-111. [20] 尚磊, 唐王倩云, 苏适, 等. 构网型无功补偿抑制新能源送端暂态过电压[J]. 电力工程技术, 2024, 43(2): 83-93. Shang Lei, Tang Wangqianyun, Su Shi, et al.Suppression of transient overvoltage in renewable energy transmission terminal by grid-forming based reactive power compensation[J]. Electric Power Engineering Technology, 2024, 43(2): 83-93. [21] 戴朝波, 于弘洋, 赵国亮, 等. STATCOM和同步调相机响应时间的仿真分析和比较[J]. 南方电网技术, 2023, 17(10): 85-93. Dai Chaobo, Yu Hongyang, Zhao Guoliang, et al.Simulation analysis and comparison of response times of STATCOM and synchronous condensers[J]. Southern Power System Technology, 2023, 17(10): 85-93. [22] 王若愚, 蔡京陶, 叶键民, 等. STATCOM与新型调相机在交直流受端系统中的暂态特性对比研究[J]. 广东电力, 2021, 34(2): 77-83. Wang Ruoyu, Cai Jingtao, Ye Jianmin, et al.Comparative study on transient characteristics of STATCOM and new condenser in AC/DC receiving terminal system[J]. Guangdong Electric Power, 2021, 34(2): 77-83. [23] 南瑞继保. 全国首套电网侧静止同步调相机顺利投运[EB/OL]. (2024-10-29)[2024-12-29]. https://www. in-en.com/article/html/energy-2335357.shtml. [24] Wu Wenhua, Zhou Leming, Chen Yandong, et al.Sequence-impedance-based stability comparison between VSGs and traditional grid-connected inverters[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 46-52. [25] Zhang Jiawei, Zhang Chen, Shi Xianqiang, et al.A novel energy-type SVG with grid forming control for grid voltage and inertial support[C]//2023 IEEE 14th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Shanghai, China, 2023: 821-828. [26] 张家玮, 张琛, 史先强, 等. 储能型静止无功发生装置及其自同步电压源控制[J]. 高电压技术, 2023, 49(1): 61-71. Zhang Jiawei, Zhang Chen, Shi Xianqiang, et al.Energy-storage-type static var generator and its autonomous-synchronization voltage source control[J]. High Voltage Engineering, 2023, 49(1): 61-71. [27] 朱瑛, 何飞, 蔡寿国, 等. 弱电网下直驱风机网侧换流器建模及稳定运行控制策略分析[J]. 电力自动化设备, 2023, 43(9): 71-78. Zhu Ying, He Fei, Cai Shouguo, et al.Modeling and stable operation control strategy analysis for grid-side converter of direct-drive permanent magnetic synchronous generator in weak grid[J]. Electric Power Automation Equipment, 2023, 43(9): 71-78.