Active-Reactive Power Coordination Optimization Strategy for Photovoltaic High-Penetration Distribution Networks Considering SOP Operational Lifetime Degradation
Gao Yuan1, Hong Lucheng1, Lu Ying2, Wu Minghe1, Zhou Aihua3
1. Southeast University Nanjing 210096 China 2. Aiswei Technology Co., Ltd Shanghai 200000 China 3. China Electric Power Research Institute Nanjing 210096 China
摘要 智能软开关(Soft Open Point, SOP)作为柔性调控关键设备深度参与配电网优化运行,其内部关键器件(IGBT与电容器)在频繁功率调节过程中承受复杂热-电应力,进而导致寿命损耗累积和系统可靠性下降。为此,本文提出了计及SOP寿命损耗的光伏高渗透配电网有功-无功协同优化策略。首先,分析SOP内部 IGBT 与电容器对系统运行寿命的影响,构建基于任务剖面的疲劳损伤量化评估方法;其次,考虑任务剖面不确定性对寿命评估精度的影响,引入CWGAN-GP 模型生成寿命损伤场景,提出基于CWGAN-GP的寿命量化评估方法;在此基础上,引入寿命损伤影响因子,建立计及寿命约束的配电网有功-无功协同优化模型,实现SOP高可靠参与配电网优化运行;最后,在 IEEE 33节点系统上对所提策略进行验证,结果表明所提策略在寿命损伤影响因子由1.0调整至0.6时,SOP中关键器件最小寿命由5.79年显著提升至23.96年,SOP整体寿命得到有效延长,为配电网SOP寿命约束下的优化运行提供有效参考。
Abstract:With the implementation of the "dual carbon" goals and the development of new power systems, the installed capacity of renewable energy sources such as photovoltaics and wind power in China has reached new highs, contributing to the construction of a low-carbon, efficient, and sustainable power system. As a high proportion of distributed energy sources are integrated into the distribution network through power electronic devices, the distribution network is gradually exhibiting significant characteristics of power electronics. In a power electronicized distribution network, large numbers of inverters, rectifiers, and other devices can precisely control and regulate the grid, effectively addressing issues such as reverse power flow, increased network losses, line overloads, and voltage violations. Firstly, analyze the impact of key power electronic devices (IGBTs, capacitors) on the lifetime of SOP (Standard Operating Procedures) and propose a method for quantifying SOP fatigue damage evaluation based on the distribution network mission profile. Secondly, considering the impact of mission profile uncertainty on the accuracy of SOP lifetime evaluation, use the CWGAN-GP model to characterize the uncertainty in SOP fatigue damage scenarios and propose a distribution network SOP lifetime quantification evaluation method based on the CWGAN-GP model. This provides a theoretical basis for considering SOP lifetime in the optimization of distribution network operations. Finally, introduce an SOP lifetime damage influence factor and establish an active-reactive power coordination optimization model for photovoltaic high-penetration distribution networks that accounts for SOP lifetime loss, enabling SOPs to participate in the optimization of distribution network operations with high reliability. Simulation results on the IEEE 33-bus test system show that, the fatigue damage scenarios of IGBT devices generated by the CWGAN-GP are almost identical to the CDF (Cumulative Distribution Function) of the real historical device lifetime damage scenarios, indicating that the generated device lifetime damage scenarios not only effectively capture the output characteristics of historical device lifetime damage data but also follow the correct statistical distribution pattern. The SOP lifetime damage influence factors were set to 0.6, 0.7, 0.8, and 0.9, respectively. As the lifetime damage influence factor decreases, the stability of the IGBT and capacitors significantly deteriorates. However, while extending the SOP lifetime, the operational losses in the distribution network also increase. Therefore, it is evident that a balance must be struck between extending the SOP lifetime and reducing distribution network losses, ultimately determining an optimal SOP lifetime damage influence factor that ensures the long-term stable operation of the SOP while optimizing the operational efficiency of the distribution network. The following conclusions can be drawn from the simulation analysis: 1) A method for quantifying SOP fatigue damage based on the distribution network mission profile is proposed, calculating device fatigue using thermal load and lifetime models. 2) A photovoltaic high-penetration distribution network SOP lifetime evaluation method considering mission profile uncertainty is proposed. The CWGAN-GP model is used to characterize mission profile uncertainty, achieving precise reliability assessment of the SOP. 3) An active-reactive power coordination optimization strategy for photovoltaic high-penetration distribution networks considering SOP lifetime loss is proposed. The lifetime of key devices in SOP is significantly improved, enabling highly reliable SOP participation in distribution network operation.
[1] 马燕峰, 李金媛, 王子建, 等.基于量测数据的新能源电力系统区域等效惯量评估方法[J]. 电工技术学报, 2024, 39(17): 5406-5421. Ma Yanfeng, Li Jinyuan, Wang Zijian, et al.Assessment method of regional equivalent inertia of new energy power system based on measured data[J]. Transactions of China Electrotechnical Society, 2021, 39(17): 5406-5421. [2] 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(06): 61-69. Shu Yinbiao, Chen Guoping, He Jingbo, et al.Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(06): 61-69. [3] 赵平, 赵期期, 艾小猛. 考虑极限场景的主动配电网重构与无功电压调整联合鲁棒优化[J]. 电工技术学报, 2021, 36(S2): 496-506. Zhao Ping, Zhao Qiqi, Ai Xiaomeng.Network reconfiguration and reactive power voltage regulation coordinated robust optimization for active distribution network considering extreme scenarios[J]. Transactions of China Electrotechnical Society, 2021, 36(S2): 496-506. [4] 李桐, 韩学山. 时变追踪并网光伏电站最大输出功率的无功优化方法[J]. 电工技术学报, 2023, 38(11): 2921-2931. Li Tong and Han Xueshan. Reactive power optimization for time-varying tracking of maximum output power of grid-connected photovoltaic power station[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 2921-2931. [5] 麻秀范, 张乐萱, 于琨澎, 等. 考虑5G基站备用储能优化调控的配电网重构双层优化方法[J]. 电工技术学报, 2024, 39(16): 5028-5041. Ma Xiufan, Zhang Lexuan, Yu Kunpeng, et al.A two-layer optimization approach for distribution network reconfiguration considering optimal regulation of 5G base station backup energy storage[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 5028-5041. [6] T. Ding, Z. Wang, W. Jia et al. Multiperiod distribution system restoration with routing repair crews, mobile electric vehicles, and soft-open-point networked microgrids[J]. IEEE Transactions on Smart Grid, 2020, 11(06): 4795-4808. [7] Hong Liu, Li Qizhe, Zhang Qiang, et al.Optimal dispatch of unbalanced distribution networks with phase-changing soft open points based on safe reinforcement learning[J]. Sustainable Energy Grids & Networks, 2024, 40: 101521. [8] Wang Rui, Ji Haoran, Li Peng, et al.Multi-resource dynamic coordinated planning of flexible distribution network[J]. Nature Communications, 2024, 15(01): 4576. [9] A. Azizivahed, K. Gholami, A. Arefi, et al.Utilizing soft open points for effective voltage management in multi-microgrid distribution systems[J]. Electricity, 2024, 5(04): 1008-1021. [10] Z. Yang, H. Min, F. Yang, et al.A novel control strategy for soft open point to address terminal voltage violations and load rate imbalance in low-voltage power distribution station areas[J]. Sensors, 2024, 24(06): 1976. [11] J. Zhang, T. Wang, Z. Liao, et al.Flexible interconnection strategy for distribution networks considering multiple soft open points siting and sizing[J]. Electric Power Systems Research, 2024, 241: 111335. [12] Huang Wentao, Gao Congzhe, Li Ran, et al.A model predictive control-based voltage optimization method for highway transportation power supply networks with soft open points[J]. IEEE Transactions on Industry Applications, 2024, 60(01): 1141-1150. [13] 闵亮, 娄铖伟, 杨进, 等. 考虑换相软开关三相不平衡调节的主动配电网多目标运行优化[J]. 电力系统自动化, 2023, 47(12): 56-65. Min Liang, Lou Chengwei, Yang Jin.Multi-objective operation optimization of active distribution network considering three-phase unbalance regulation of phase-switching soft open points[J]. Automation of Electric Power Systems, 2023, 47(12): 56-65. [14] 涂春鸣, 王鑫, 杨万里, 等. 考虑台区变压器经济运行区间的智能软开关控制策略[J]. 电网技术, 2023, 47(02): 848-858. Tu Chunming, Wang Xin, Yang Wanli.Soft open point control strategy considering economic operation area of distribution transformer[J]. Power System Technology, 2023, 47(02): 848-858. [15] 孙充勃, 李敬如, 原凯, 等. 基于区间优化的配电网智能软开关与储能系统联合优化方法[J]. 高电压技术, 2021, 47(01): 45-54. Sun Chongbo, Li Jingru, Yuan Kai, et al.Two-stage optimization method of soft open point and energy storage system in distribution network based on interval optimization[J]. High Voltage Engineering, 2021, 47(01): 45-54. [16] 张榴晨, 张亚, 茆美琴. 基于任务剖面的单相Boost型功率解耦光伏逆变器寿命预测[J]. 太阳能学报, 2022, 43(07): 109-114. Zhang Liuchen, Zhang Ya and Mao Meiqin. Mission profile based lifetime prediction for single-phase boost power decoupling photovoltaic inverter[J]. Acta Energiae Solaris Sinica, 2022, 43(07): 109-114. [17] 王希平, 李志刚, 姚芳. 模块化多电平换流阀IGBT器件功率损耗计算与结温探测[J]. 电工技术学报, 2019, 04(08): 1636-1646. Wang Xiping, Li Zhigang, Yao Fang.Power loss calculation and junction temperature detection of IGBT devices for modular multilevel valve[J]. Transactions of China electrotechnical society, 2019, 04(08): 1636-1646. [18] 杨珍贵, 周雒维, 杜雄, 等. 基于器件的结温变化评估风机中参数差异对网侧变流器可靠性的影响[J]. 中国电机工程学报, 2013, 33(30): 41-49. Yang Zhengui, Zhou Luowei, Du Xiong, et al.Effects of different parameters on reliability of grid-side converters based on varied junction temperature of devices in wind turbines[J]. Proceedings of the CSEE, 2013, 33(30): 41-49. [19] 丁红旗,马伏军,徐千鸣等.模块化多电平换流器子模块IGBT损耗优化控制策略[J].电力系统自动化,2021,45(17):143-152. Ding Hongqi, Ma Fujun, Xu Qianming, et al.Loss optimization control strategy for IGBT in sub-module of modular multilevel converter[J]. Automation of Electric Power Systems, 2021, 45(17): 143-152. [20] Ariya Sangwongwanich, Yongheng Yang, Dezso Sera, et al.On the impacts of PV array sizing on the inverter reliability and lifetime[J]. IEEE Transactions on Industry Applications, 2018, 54(04): 3656-3667. [21] 吴谌娟, 于凯, 安军鹏. CRH5型动车组用IGBT器件寿命评估[J]. 电工技术,2022, (22): 102-104. Chen Juan, Yu Kai, An Junpeng, et al.Lifetime estimation of IGBT module for CRH5EMU[J]. Electric Engineering, 2022, (22): 3656-3667. [22] Yang Yongheng, Wang Huai, Blaabjerg Frede, et al.Reactive power injection strategies for single-phase photovoltaic systems considering grid requirements[J]. IEEE Transactions on Industry Applications, 2014, 50(6), 4065-4076. [23] 吴云杰, 张金保, 赖伟, 等. 基于金属化薄膜电容器状态在线监测的剩余寿命评估方法[J]. 电工技术学报, 2024, 39(22): 7239-7255. Wu Yunjie, Zhang Jinbao, Lai Wei, et al.Remaining lifetime assessment method based on on-line condition monitoring of metallized film capacitors[J]. Transactions of China electrotechnical society, 2024, 39(22): 7239-7255. [24] Erick Matheus da Silveira Brito, Allan Fagner Cupertino, Heverton Augusto Pereir. Reliability -based trade-off analysis of reactive power capability in PV inverters under different sizing ratio[J]. International Journal of Electrical Power and Energy Systems, 2021, 136: 107677. [25] Carton P, Giraudeau M and F Davenel. New FIDES models for emerging technologies[J]. Reliability & Maintainability Symposium, 2017. [26] A. Sangwongwanich, Y. Yang, D. Sera et al. Mission profile-oriented control for reliability and lifetime of PV inverters[J]. IEEE Transactions on Industry Applications, 2020, 56(01): 601-610. [27] A. Sangwongwanich, Y. Yang, D. Sera et al. Impacts of PV array sizing on PV inverter lifetime and reliability[J]. IEEE Transactions on Industry Applications, 2018, 54(04): 3656-3667. [28] S. Bouguerra, M. Yaiche, O. Gassab et al. The impact of PV panel positioning and degradation on the PV inverter lifetime and reliability[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(03): 3114-3126. [29] 丁朝辉, 江钧, 袁田, 等. 储能变流器多时间尺度寿命评估方法[J]. 电气工程学报, 2024, 19(03): 41-49. Ding Chaohui, Jiang Jun, Yuan Tian, et al.Multi-time scale life assessment method for energy storage inverters[J]. Journal of Electrical Engineering, 2024, 19(09): 41-49. [30] 张午宇, 齐磊, 张翔宇, 等. 计及金属化薄膜电容器与IGBT模块退化过程相关性的柔直换流阀组件可靠性评估方法[J]. 电工技术学报, 2024, 39(14): 4508-4518. Zhang Wuyu, Qi Lei, Zhang Xiangyu, et al.Reliability evaluation method for VSC-HVDC valve submodules considering the correlation between the degradation process of metallized polypropylene film capacitors and IGBT modules[J]. Transactions of China electrotechnical society, 2024, 39(14): 4508-4518. [31] 张波, 高远, 王磊, 等. 光伏发电系统容配比与功率限值整定方法[J]. 太阳能学报, 2024, 45(07): 532-539. Zhang Bo, Gao Yuan, Wang Lei, et al.Capacity ratio and varible power point tracking control limit setting method for photovoltaic power generation system[J]. Acta Energiae Solaris Sinica, 2024, 45(07): 532-539. [32] Y. Yang, A. Sangwongwanich, F. Blaabjerg, et al.Design for reliability of power electronics for grid-connected photovoltaic systems[J]. CPSS Transactions on Power Electronics and Applications, 2016, 1(01): 92-103. [33] R. Silva, R. de Barros, E. Brito, et al. Pursuing computationally efficient wear-out prediction of PV inverters: The role of the mission profile resolution[J]. Microelectronics Reliability, 2020, 110: 113679. [34] A. F. Cupertino, J. M. Lenz, E. M. Brito, et al.Impact of the mission profile length on lifetime prediction of PV inverters[J]. Microelectronics Reliability, 2019, 100: 113 427.