Abstract:With the rapid development of science and technology, the space electromagnetic environment is becoming increasingly complex, diverse in composition, and characterized by wide spectrum occupation, large field strength amplitude span, and fast spatiotemporal changes. In recent years, intelligent electrical equipment has developed rapidly, with significant growth in smart transformers, intelligent switches, multi-level conversion solid-state transformers, electric vertical take-off and landing aircraft (eVTOL), unmanned smart connected electric vehicles, and drones. Therefore, studying the perceptual representation of complex space electromagnetic environments and the safety protection methods of intelligent electrical equipment have significant theoretical significance and practical value. This article will discuss three aspects: precise measurement and characterization modeling of complex space electromagnetic environments, coupling paths and equipment failure mechanisms between space electromagnetic environments and intelligent electrical equipment, and research on protection methods of intelligent electrical equipment for complex space electromagnetic environments. Finally, future research directions and application development trends in this field will be presented. In the research on electromagnetic characteristic measurement and representation modeling of complex space electromagnetic environments, this paper systematically summarizes their typical features and reviews key techniques such as electromagnetic field measurement, pulse signal acquisition, parameter extraction, and quantitative modeling. Progress in time-frequency characterization, pulse-field modeling, and spatial distribution representation of environmental electromagnetic fields is also analyzed. In the study of coupling paths between space electromagnetic environments and intelligent electrical equipment as well as the associated failure mechanisms, this paper examines typical coupling channels, including free-space illumination, cable coupling, enclosure-slot coupling, and grounding-network coupling. It further summarizes the multi-scale energy coupling behavior from structural, component, and system perspectives, and outlines the electromagnetic, thermal, and mechanical response mechanisms of intelligent transformers, electric aircraft, unmanned systems, and other intelligent electrical equipment under high-altitude electromagnetic pulses, broadband radiation, and continuous-wave interference, thereby revealing the potential performance degradation and failure modes of key functional modules. In the research on protection methods for intelligent electrical equipment operating in complex space electromagnetic environments, this paper reviews representative engineering measures for both front-door and back-door protection, including structural shielding, filtering and suppression, grounding optimization, module reinforcement, and electromagnetic isolation. Typical protection cases and their validation results are analyzed, and the main strategies and engineering implementation routes for improving equipment immunity are summarized. In future research on the safety and protection of intelligent electrical equipment operating in complex space electromagnetic environments, it remains essential to further improve measurement methodologies and database construction for such environments, enabling more accurate characterization of electromagnetic features across wider frequency ranges and multiple source conditions. At the same time, multi-scale response models capable of capturing strong electromagnetic disturbance effects need to be developed. In terms of protection technologies, it is urgent to establish multi-spatiotemporal coordinated electromagnetic protection frameworks, optimize dynamic protection strategies using intelligent algorithms, and explore electromagnetic countermeasure and active-defense mechanisms. In addition, enhancing fault diagnosis and performance prediction capabilities of intelligent electrical equipment, along with conducting operational risk assessment based on interconnected monitoring and big data analytics, will be key directions to ensure the safe and reliable operation of intelligent electrical equipment under complex space electromagnetic environments.
杨庆新, 祝丽花. 复杂空间电磁环境下智能电工装备的安全与防护[J]. 电工技术学报, 2025, 40(24): 7819-7831.
Yang Qingxin, Zhu Lihua. Safety and Protection of Intelligent Electrical Equipment in Complex Space Electromagnetic Environment. Transactions of China Electrotechnical Society, 2025, 40(24): 7819-7831.
[1] Panasyuk M I, Podzolko M V, Kalegaev V V, et al.Multi-satellite operative monitoring of near-earth radiation within the universat-SOCRAT project[J]. Moscow University Physics Bulletin, 2018, 73(6): 687-695. [2] Li De, Dong Cheng, Zhang Aiping, et al.Polymer- based composites for electromagnetic interference shielding: principles, fabrication, and applications[J]. Composites Part A: Applied Science and Manufacturing, 2025, 194: 108927. [3] Junior A, Leipold A, Gelhausen M C.Overview of the clean sky 2 technology evaluator project methodology[J]. Aerospace, 2025, 12(4): 268. [4] 程晨, 贺恒鑫, 胡锦洋, 等. 正极性冲击流注—先导转化放电通道温度测量研究[J]. 中国电机工程学报, 2020, 40(4): 1359-1368, 1426. Cheng Chen, He Hengxin, Hu Jinyang, et al.Study on temperature measurement of discharge channel in streamer to leader transition process under positive impulse voltage[J]. Proceedings of the CSEE, 2020, 40(4): 1359-1368, 1426. [5] 程晨, 陈维江, 贺恒鑫, 等. 基于脉冲定量纹影系统的正先导放电起始阶段通道瞬态温度测量[J]. 电工技术学报, 2023, 38(23): 6483-6493. Cheng Chen, Chen Weijiang, He Hengxin, et al.Experimental measurement on the transient tempera- ture evolution of positive initial leader channel based on pulse-driven quantitative schlieren system[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6483-6493. [6] 王古玥, 王泽忠, 刘春明. 高空电磁脉冲晚期成分作用下变压器的等效电感及无功损耗特性[J]. 电工技术学报, 2025, 40(18): 5728-5741. Wang Guyue, Wang Zezhong, Liu Chunming.Equivalent inductance and reactive power loss characteristics of transformer under late-time high-altitude electro- magnetic pulse[J]. Transactions of China Electro- technical Society, 2025, 40(18): 5728-5741. [7] 黄天超, 王泽忠, 李宇妍. 换流变压器直流偏磁对油箱涡流损耗的影响[J]. 电工技术学报, 2023, 38(8): 2004-2014. Huang Tianchao, Wang Zezhong, Li Yuyan.The influence of converter transformer DC bias on eddy current loss of tank[J]. Transactions of China Elec- trotechnical Society, 2023, 38(8): 2004-2014. [8] 张岩, 赵鑫, 刘尚合, 等. 静电电磁脉冲诱发航天器绝缘材料闪络特性[J]. 兵工学报, 2022, 43(8): 1956-1965. Zhang Yan, Zhao Xin, Liu Shanghe, et al.Flashover characteristics of insulation materials of spacecraft induced by ESD EMP[J]. Acta Armamentarii, 2022, 43(8): 1956-1965. [9] 刘尚合, 马贵蕾, 满梦华, 等. 电磁防护仿生研究进展[J]. 高电压技术, 2022, 48(5): 1750-1762. Liu Shanghe, Ma Guilei, Man Menghua, et al.Research progress of electromagnetic protection biomimetics[J]. High Voltage Engineering, 2022, 48(5): 1750-1762. [10] 张建平, 胡小锋, 刘尚合, 等. 强电磁场辐照环境诱发金属电极静电放电时延规律[J]. 兵工学报, 2021, 42(11): 2409-2417. Zhang Jianping, Hu Xiaofeng, Liu Shanghe, et al.On the delay time of induced electrostatic discharge of metal electrode under the action of ESD EMP[J]. Acta Armamentarii, 2021, 42(11): 2409-2417. [11] Hong Tao, Zhao Weiting, Liu Rongke, et al.Space- air-ground IoT network and related key techno- logies[J]. IEEE Wireless Communications, 2020, 27(2): 96-104. [12] Liu Jin, Wei Minhong, Li Huafang, et al.Measurement and mapping of the electromagnetic radiation in the urban environment[J]. Electromagnetic Biology and Medicine, 2020, 39(1): 38-43. [13] Titov E V, Soshnikov A A, Migalev I E.Computer imaging of electromagnetic environment in air space with industrial electromagnetic field sources in conditions of combined influence of EM radiation[J]. Journal of Electromagnetic Engineering and Science, 2022, 22(1): 34-40. [14] 贺家慧, 张丹丹, 张露, 等. ±500 kV换流站工频电磁环境测量与实验室模拟[J]. 高压电器, 2023, 59(4): 10-16. He Jiahui, Zhang Dandan, Zhang Lu, et al.Measurement and laboratory simulation of power frequency electro- magnetic environment of ±500 kV converter station[J]. High Voltage Apparatus, 2023, 59(4): 10-16. [15] Gong Haoxuan, Wang Xing, Liu Chunheng, et al.Fusion of measurement and simulation technique for electromagnetic environment analysis in large-scale urban areas[J]. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 9512312. [16] 阎寒冰, 冯智慧, 陈秀芳, 等. 变电站电磁环境智能移动监测装置设计与实测[J]. 电力科学与技术学报, 2024, 39(1): 193-200. Yan Hanbing, Feng Zhihui, Chen Xiufang, et al.Design and measurement of intelligent mobile monitoring device for electromagnetic environment in substation[J]. Journal of Electric Power Science and Technology, 2024, 39(1): 193-200. [17] Wang Bo, Tan Pingan, Shangguan Xu, et al.Three- dimensional magnetic field analytical model-based electromagnetic environment assessment of WPT systems[J]. Journal of Power Electronics, 2024, 24(2): 324-338. [18] 刘奇, 杜清清, 王玥, 等. 实时电磁环境监测系统设计与实现[J]. 中国科学: 物理学力学天文学, 2024, 54(1): 133-142. Liu Qi, Du Qingqing, Wang Yue, et al.Design and implementation of a real-time electromagnetic environment monitoring system[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2024, 54(1): 133-142. [19] 许雄, 汪连栋, 王国良, 等. 电磁环境的分层认知概念及其应用[J]. 航天电子对抗, 2015, 31(4): 29-31, 60. Xu Xiong, Wang Liandong, Wang Guoliang, et al.A layered cognitive concept for electromagnetic envi- ronment and its application[J]. Aerospace Electronic Warfare, 2015, 31(4): 29-31, 60 [20] Zhang Yanming, Jiang Lijun.Space-time-frequency characterization in electromagnetic near-field scanning: a data-driven approach[J]. IEEE Transactions on Elec- tromagnetic Compatibility, 2023, 65(6): 1921-1929. [21] 李岩松, 王超, 戎建刚, 等. 复杂电磁环境量化表征方法研究综述[J]. 航天电子对抗, 2020, 36(6): 23-27. Li Yansong, Wang Chao, Rong Jiangang, et al.A review of quantitative characterization methods of complex electromagnetic environment[J]. Aerospace Electronic Warfare, 2020, 36(6): 23-27. [22] 邹钊, 李娅, 李培林. 电磁环境复杂度量化及展现方法[J]. 电子信息对抗技术, 2018, 33(6): 63-66, 75. Zou Zhao, Li Ya, Li Peilin.Comprehensive research on the quantitative methods of electromagnetic environment complexity[J]. Electronic Information Warfare Technology, 2018, 33(6): 63-66, 75. [23] Yin Baiqiang, Chen Cui, Zuo Lei, et al.An evaluation method of electromagnetic interference based on a fast S-transform and time-frequency space model[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(2): 396-404. [24] Yin Baiqiang, Deng Fangwen, Wang Ruoyu, et al.An optimal adaptive S-transform time-frequency space model for electromagnetic interference complexity evaluation[J]. Physica Scripta, 2023, 98(11): 115206. [25] 冯彦卿, 王伦文. 基于构造型云神经网络的电磁环境评估方法[J]. 计算机工程与应用, 2017, 53(16): 211-215. Feng Yanqing, Wang Lunwen.Electromagnetic environment complexity dynamic evaluation method based on constructive cloud neural networks[J]. Computer Engineering and Applications, 2017, 53(16): 211-215. [26] Liu Yang, Chai Changchun, Yu Xinhai, et al.Damage effects and mechanism of the GaN high electron mobility transistor caused by high electromagnetic pulse[J]. Acta Physica Sinica, 2016, 65(3): 038402. [27] Chong Chen, Li Xing, Liu Hongxia, et al.Study on electromagnetic pulse damage of 22nm FDSOI in radiation environment[J]. IEEE Transactions on Device and Materials Reliability, 2024, 24(4): 646-655. [28] 马书民, 戎子睿, 林湘宁, 等. 直流偏磁影响下继电保护的误拒动机理分析及对策研究[J]. 电力系统保护与控制, 2022, 50(8): 86-98. Ma Shumin, Rong Zirui, Lin Xiangning, et al.Analysis and countermeasures of relay protection false rejection mechanism under the influence of DC bias[J]. Power System Protection and Control, 2022, 50(8): 86-98. [29] Wang Y M, Ma L Y, Chen Y Z.Electromagnetic energy coupling path and protection method of UAV datalink against broad-spectrum high-power micro- wave radiation[J]. Radioengineering, 2022, 31(2): 201-209. [30] Kubacki R, Przesmycki R, Laskowski D.Shielding effectiveness of unmanned aerial vehicle electronics with graphene-based absorber[J]. Electronics, 2023, 12(18): 3973. [31] Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al.An ultra- broadband energy selective surface design method: from filter circuits to metamaterials[J]. IEEE Transa- ctions on Antennas and Propagation, 2023, 71(7): 5865-5873. [32] Tan Jingjing, Dai Xunhua, Tang Fengxiao, et al.Intelligent configuration method based on UAV- driven frequency selective surface for communication band shielding[J]. IEEE Internet of Things Journal, 2023, 10(13): 11507-11517. [33] Kim S Y, Park J S, Lee Wangsang.Development and verification of indirect lightning-induced transient protection circuit for avionics system[J]. Applied Computational Electromagnetics Society, 2021, 36(6): 670-675. [34] Zhong Shouhong, Qin Feng, Gao Yuan, et al.Response characteristics of gas discharge tube to high-power microwave[J]. IEEE Access, 2021, 9: 111486-111492. [35] 吴刚, 乐波, 杨雨枫, 等. 短波接收天线系统核电磁脉冲注入试验[J]. 强激光与粒子束, 2019, 31(9): 093205. Wu Gang, Yue Bo, Yang Yufeng, et al.High-altitude electromagnetic pulse survivability test study on shortwave receiving antenna system by pulsed current injection[J]. High Power Laser and Particle Beams, 2019, 31(9): 093205. [36] 杜传报, 毛从光, 崔志同, 等. 无线通信系统电磁脉冲传导防护组件设计与有效性试验验证[J]. 强激光与粒子束, 2021, 33(9): 093005. Du Chuanbao, Mao Congguang, Cui Zhitong, et al.Design and validation test of high-altitude electro- magnetic pulse conductive protector module for wireless communication system[J]. High Power Laser and Particle Beams, 2021, 33(9): 093005. [37] Wu Han, Du Jinhua, Dong Shuai, et al.Analysis and improvement of transformer overvoltage protection under high altitude electromagnetic pulse[C]//2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET), Chengdu, China, 2024: 883-889. [38] 刘振磊, 李炜昕, 张建平, 等. 面向L波段的强电磁脉冲防护电路设计[J]. 强激光与粒子束, 2025, 37(8): 77-85. Liu Zhenlei, Li Weixin, Zhang Jianping, et al.Design of strong electromagnetic pulse protection circuit based on L-band[J]. High Power Laser and Particle Beams, 2025, 37(8): 77-85. [39] Al Salameh M S H, Musa B A M. COMSOL solutions to EMI hardening of UAVs against lightning strikes[C]// 2023 International Microwave and Antenna Symposium (IMAS), Cairo, Egypt, 2023: 215-218. [40] Permata D, Gurning M C, Martin Y, et al.Electro- magnetic interference shielding in unmanned aerial vehicle against lightning strike[J]. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2019, 17(2): 915. [41] Kossowski T, Kwiatkowski B, Mazur D, et al.Interference protection from lightning discharges associated with type of unmanned aerial vehicle shield[J]. Measurement, 2025, 241: 115621. [42] 赵敏, 许彤, 程二威, 等. 无人机数据链电磁干扰机理和防护研究[J]. 强激光与粒子束, 2021, 33(3): 033005. Zhao Min, Xu Tong, Cheng Erwei, et al.Mechanism and protection on the data link of UAV exposed to electromagnetic interference[J]. High Power Laser and Particle Beams, 2021, 33(3): 033005. [43] Liu Yifei, Wu Wei, Cheng Yinhui, et al.Prediction of electromagnetic pulse irradiation response based on support vector machine[J]. Journal of Physics: Conference Series, 2021, 1802(2): 022010. [44] 姚理想, 黄贤俊, 陈泓廷, 等. 人工智能赋能电磁防护材料研究进展及思考[J]. 强激光与粒子束, 2025, 37(8): 089001. Yao Lixiang, Huang Xianjun, Chen Hongting, et al.Advances and perspectives in artificial intelligence- empowered electromagnetic protection materials research[J]. High Power Laser and Particle Beams, 2025, 37(8): 089001. [45] Tan Xiaopeng, Su Shaojing, Sun Xiaoyong.Research on narrowband interference suppression technology of UAV network based on spread spectrum communi- cation[C]//2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS), Dalian, China, 2020: 335-338. [46] Xue Rui, Zhao Mingfei.Cognitive-based high robustness frequency hopping strategy for UAV swarms in complex electromagnetic environment[J]. Wireless Communications and Mobile Computing, 2022(1): 4139345. [47] Belousov A O, Zhechev Y S, Chernikova E B, et al.UAVs protection and countermeasures in a complex electromagnetic environment[J]. Complexity, 2022(1): 8539326.