Several Key Issues on Stability Study of DFIG-Based Wind Turbines with Negative Sequence Control during Low Short-Circuit Ratio Power Grids
Xu Hailiang1, Wu Han1, Li Zhi1, Zhao Rende1, Hu Jiabing2
1. College of New Energy China University of Petroleum(East China) Qingdao 266580 China; 2. School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China
Abstract:Due to the reverse distribution characteristics of wind power resources and power load in China, low short circuit ratio has become the main form of wind turbines tied into power grid. The interaction between the doubly-fed induction generator (DFIG)—based wind turbines and the power grid is easy to lead to the small interference instability issue under symmetrical power grid with low short circuit ratio. Under asymmetric power grid, the positive and negative sequence impedance and its coupling components will lead to more complex interaction with the grid-side and rotor-side converters, and the instability risk needs to be studied and evaluated. Based on the existing research, the key challenges to the stability of DFIG system with negative sequence control under low short-circuit ratio power grid are analyzed. In view of the key issues, corresponding solutions are proposed, proceeded from the aspects of impedance modeling, stability analysis and control strategy improvement. Finally, the development prospects of related technology are discussed.
徐海亮, 吴瀚, 李志, 赵仁德, 胡家兵. 低短路比电网下含负序控制双馈风机稳定性研究的几个关键问题[J]. 电工技术学报, 2021, 36(22): 4688-4702.
Xu Hailiang, Wu Han, Li Zhi, Zhao Rende, Hu Jiabing. Several Key Issues on Stability Study of DFIG-Based Wind Turbines with Negative Sequence Control during Low Short-Circuit Ratio Power Grids. Transactions of China Electrotechnical Society, 2021, 36(22): 4688-4702.
[1] 贺益康, 徐海亮. 双馈风电机组电网适应性问题及其谐振控制解决方案[J]. 中国电机工程学报, 2014, 34(29): 5188-5203. He Yikang, Xu Hailiang.The grid adaptability problem of DFIG-based wind turbines and its solution by resonant control scheme[J]. Proceedings of the CSEE, 2014, 34(29): 5188-5203. [2] GWEC. Global Wind Report2019[OB/OL]. [2019-03-10].https://gwec.net/global-wind-report-2019/. [3] 国家能源局. 2019年风电并网运行情况[OB/OL]. [2019-03-10]. http://www.nea.gov.cn/2020-02/28/c_ 138827910.htm. [4] 年珩, 周骐, 吴超, 等. 双馈风电机组并网运行下谐波电流建模与特性分析[J]. 中国电机工程学报, 2019, 39(17): 5037-5048, 5285. Nian Heng, Zhou Qi, Wu Chao, et al.The modeling and characteristic analysis of harmonic current of DFIG based wind turbine in grid-connected mode[J]. Proceedings of the CSEE, 2019, 39(17): 5037-5048, 5285. [5] IEEE. IEEE guide for planning DC links terminating at AC locations having low short-circuit capacities: IEEE Std 1204-1997[S]. New York, 1997. [6] Zhang Xueguang, Zhang Yage, Fang Ran, et al.Impedance modeling and SSR analysis of DFIG using complex vector theory[J]. IEEE Access, 2019, 7: 155860-155870. [7] Yogarathinam A, Kaur J, Chaudhuri N.Impact of inertia and effective short circuit ratio on control of frequency in weak grids interfacing LCC-HVDC and DFIG-based wind farms[J]. IEEE Transactions on Power Delivery, 2017, 32(4): 2040-2051. [8] Liu Ruikuo, Yao Jun, Wang Xuewei, et al.Dynamic stability analysis and improved LVRT schemes of DFIG-based wind turbines during a symmetrical fault in a weak grid[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 303-318. [9] Kumar D, Chatterjee K.Analysis and enhancement of small-signal stability on DFIG-based wind integrated power system through the optimal design of linear quadratic regulator[J]. IET Renewable Power Generation, 2020, 14(4): 628-639. [10] 王涛, 诸自强, 年珩. 非理想电网下双馈风力发电系统运行技术综述[J]. 电工技术学报, 2020, 35(3): 455-471. Wang Tao, Zhu Ziqiang, Nian Heng, et al.Impedance modeling and stability analysis of virtual synchronous control based on doubly-fed wind generation systems[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 455-471. [11] Hu Jiabing, Hu Qi, Wang Bo, et al.Small signal instability of PLL-synchronized type-4 wind turbines connected to high-impedance AC grid during LVRT[J]. IEEE Transactions on Energy Conversion, 2016, 31(4): 1676-1687. [12] 李群湛, 王辉, 黄文勋, 等. 电气化铁路牵引变电所群贯通供电系统及其关键技术[J]. 电工技术学报, 2021, 36(5): 1064-1074. Li Qunzhan, Wang Hui, Huang Wenxun, et al.Interconnected power supply system of traction substation group and its key technologies for the electrified railway[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1064-1074. [13] 张丽艳, 韩笃硕, 王辉, 等. 牵引变电所群贯通供电系统负序补偿模型及控制策略[J/OL]. 电力系统自动化, [2021-08-15]. http://kns.cnki.net/kcms/ detai -l/32.1180.TP.20210716.1731.006.html. Zhang Liyan, Han Dushuo, Wang Hui, et al. Negative sequence compensation model and control strategy for interconnected power supply system of traction substation group[J/OL]. Automation of Electric Power Systems, [2021-08-15]. http://kns.cnki.net/kcms/detai-l/32.1180.TP.20210716.1731.006.html. [14] Shabestary M, Mortazavian S, Mohamed Y.Overview of voltage support strategies in grid-connected VSCs under unbalanced grid faults considering LVRT and HVRT requirements[C]//IEEE International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, 2018: 145-149. [15] 全国电力监管标准化技术委员会. 风电场接入电力系统技术规定第1部分:陆上风电(修订): GB/T 19963—2019[S]. 北京, 2019. [16] Zhang Yongchang, Jiao Jian, Xu Donglin.Direct power control of doubly fed induction generator using extended power theory under unbalanced network[J]. IEEE Transactions on Power Electronics, 2019, 34(12): 12024-12037. [17] Wang Liang, Xie Xiaorong, Jiang Qirong, et al.Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2772-2779. [18] Karunanayake C, Ravishankar J, Dong Z.Nonlinear SSR damping controller for DFIG based wind generators interfaced to series compensated transmission systems[J]. IEEE Transactions on Power Systems, 2020, 35(2): 1156-1165. [19] Shah N, Joshi S.Modal analysis for selection of DFIG-based wind farms for damping and reduction of the risk of SSR[J]. IET Energy Systems Integration, 2019, 1(4): 252-268. [20] Wafaa M, Dessaint L.Approach to dynamic voltage stability analysis for DFIG wind parks integration[J]. IET Renewable Power Generation, 2018, 12(2): 190-197. [21] Liu Huakun, Xie Xiaorong, Gao Xiaodan, et al.Stability analysis of SSR in multiple wind farms connected to series-compensated systems using impedance network model[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3118-3128. [22] Baesmat H, Bodson M.Suppression of sub-synchronous resonances through excitation control of doubly fed induction generators[J]. IEEE Transactions on Power Systems, 2019, 34(6): 4329-4340. [23] 董晓亮, 谢小荣, 杨煜, 等. 双馈风机串补输电系统次同步谐振影响因素及稳定区域分析[J]. 电网技术, 2015, 39(1): 189-193. Dong Xiaoliang, Xie Xiaorong, Yang Yu, et al.Impacting factors and stable area analysis of subsynchronous resonance in DFIG based wind farms connected to series-compensated power system[J]. Power System Technology, 2015, 39(1): 189-193. [24] Ghafouri M, Karaagac U, Karimi H, et al.Robust subsynchronous interaction damping controller for DFIG-based wind farms[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(6): 1663-1674. [25] 张学广, 马彦, 王天一, 等. 弱电网下双馈发电机输入导纳建模及稳定性分析[J]. 中国电机工程学报, 2017, 37(5): 1507-1516. Zhang Xueguang, Ma Yan, Wang Tianyi, et al.Input admittance modeling and stability analysis of DFIG under weak grid condition[J]. Proceedings of the CSEE, 2017, 37(5): 1507-1516. [26] Hu Bin, Nian Heng, Li Meng, et al.Impedance characteristic analysis and reshaping method of DFIG system based on DPC without PLL[J]. IEEE Transactions on Industrial Electronics, 2020, DOI:10. 1109/TIE.2020.3028826. [27] Zhang Chen, Cai Xu, Rygg A, et al.Sequence domain SISO equivalent models of a grid-tied voltage source converter system for small-signal stability analysis[J]. IEEE Transactions on Energy Conversion, 2018, 33(2): 741-749. [28] Zhang Yufeng, Xu Hailiang, Wang Shinan.Complex-vector modeling of DFIG-based wind turbine riding though weak AC grid voltage dips[C]//The 9th Frontier Academic Forum of Electrical Engineering (FAFEE 2020), Xi'an, China, 2020: 429-440. [29] Liu Ju, Yao Wei, Wen Jinyu, et al.Impact of power grid strength and PLL parameters on stability of grid- connected DFIG wind farm[J]. IEEE Transactions on Sustainable Energy, 2019, 11(1): 545-557. [30] 年珩, 胡彬, 陈亮, 等. 无锁相环直接功率控制双馈感应发电机系统阻抗建模和稳定性分析[J]. 中国电机工程学报, 2020, 40(3): 951-962. Nian Heng, Hu Bin, Chen Liang, et al.Impedance modeling and stability analysis of direct power controlled doubly fed induction generator system without phase-locked loop[J]. Proceedings of the CSEE, 2020, 40(3): 951-962. [31] Liu Ruikuo, Yao Jun, Sun Peng, et al.Complex impedance-based frequency coupling characteristics analysis of DFIG-based WT during asymmetric grid faults[J]. IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.3013787. [32] Fang Xin, Yao Jun, Liu Ruikuo, et al.Small-signal stability analysis and current control reference optimization algorithm of DFIG-based WT during asymmetric grid faults[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7750-7768. [33] 姚骏, 孙鹏, 刘瑞阔, 等. 弱电网不对称故障期间双馈风电系统动态稳定性分析[J/OL]. 中国电机工程学报:1-12[2021-05-23]. https://doi.org/10.13334/ j.0258-8013.pcsee.201447. Yao Jun, Sun Peng, Liu Ruikuo, et al. Dynamic stability analysis of DFIG-based wind power system during asymmetric faults of weak grid[J/OL]. Proceedings of the CSEE: 1-12[2021-05-23]. https: //doi.org/10.13334/j.0258-8013.pcsee.201447. [34] Liang J, Howard D, Restrepo J, et al.Feedforward transient compensation control for DFIG wind turbines during both balanced and unbalanced grid disturbances[J]. IEEE Transactions on Industry Applications, 2013, 49(3): 1452-1463. [35] 李鹏瀚, 王杰, 吴飞. 双馈风电机组次同步控制相互作用的反馈线性化滑模变结构抑制[J]. 电工技术学报, 2019, 34(17): 3661-3671. Li Penghan, Wang Jie, Wu Fei.Sub-synchronous control interaction mitigation for DFIGs by sliding mode control strategy based on feedback linearization[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3661-3671. [36] Niu Feng, Chen Xi, Huang Shaopo, et al.Model predictive current control with adaptive-adjusting timescales for PMSMs[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(2): 108-117. [37] Eltamaly A M, Al-Saud M S, Abo-Khalil A G. Dynamic control of a DFIG wind power generation system to mitigate unbalanced grid voltage[J]. IEEE Access, 2020, 8: 39091-39103. [38] Garnica López M A, García de Vicuña J L, Miret J, et al. Control strategy for grid-connected three-phase inverters during voltage sags to meet grid codes and to maximize power delivery capability[J]. IEEE Transactions on Power Electronics, 2018, 33(11): 9360-9374. [39] Xu Hailiang, Zhang Yufeng, Li Zhi, et al.Reactive current constraints and coordinated control of DFIG's RSC and GSC during asymmetric grid condition[J]. IEEE Access, 2020, 8: 184339-184349. [40] Wei R, Larsen E.A refined frequency scan approach to sub-synchronous control interaction (SSCI) study of wind farms[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3904-3912. [41] Chowdhury M A, Mahmud M A, Shen W, et al.Nonlinear controller design for series-compensated DFIG-based wind farms to mitigate sub-synchronous control interaction[J]. IEEE Transactions on Energy Conversion, 2017, 32(2): 707-719. [42] 张占俊, 李建文, 董耀, 等. 弱电网下多逆变器并网谐振失稳分析方法[J]. 电气技术, 2020, 21(10): 21-28. Zhang Zhanjun, Li Jianwen, Dong Yao, et al.Method of resonance instability analysis of multiple grid-connected inverters in weak grid[J]. Electrical Engineering, 2020, 21(10): 21-28. [43] Hu Jiabing, Wang Bo, Wang Weisheng, et al.Small signal dynamics of DFIG-based wind turbines during riding through symmetrical faults in weak AC grid[J]. IEEE Transactions on Energy Conversion, 2017, 32(2): 720-730. [44] Wang Dong, Liang Liang, Shi Lei, et al.Analysis of modal resonance between PLL and DC-link voltage control in weak-grid tied VSCs[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1127-1138. [45] Lü J, Cai Xu, Amin M, et al.Sub-synchronous oscillation mechanism and its suppression in MMC-based HVDC connected wind farms[J]. IET Generation Transmission & Distribution, 2017, 12(4): 1021-1029. [46] 朱瑛, 郭雅慧, 王志聪. 基于风力发电机典型控制策略的控制参数设计及稳定性验证[J/OL].电力系统自动化. [2021-08-15]. http://kns.cnki.net/kcms/ detail/32.1180.TP.20210709.1557.004.html. Zhu Ying, Guo Yahui, Wang Zhicong. Control parameter design and stability verification based on typical control strategies of wind generators[J/OL]. Automation of Electric Power Systems, [2021-08-15]. http://kns.cnki.net/kcms/detail/32.1180.TP.20210709.1557.004.html. [47] 张栋梁, 应杰, 袁小明, 等. 基于幅相运动方程的风机机电暂态特性的建模与优化[J]. 中国电机工程学报, 2017, 37(14): 4044-4051. Zhang Dongliang, Ying Jie, Yuan Xiaoming, et al.Modelling and optimization of wind turbine electromechanical transient characteristics using magnitude phase motion equations[J]. Proceedings of the CSEE, 2017, 37(14): 4044-4051. [48] Xu Hailiang, Li Zhi, Wu Han, et al.Reduced-order modeling of DFIG-based wind turbine connected into weak AC grid based on electromechanical time scale[J]. Energy Reports, 2020, 6: 886-895. [49] 黄远胜, 刘和平, 苗轶如, 等. 基于并联虚拟电阻的级联DC-DC变换器稳定控制方法[J]. 电工技术学报, 2020, 35(18): 3927-3937. Huang Yuansheng, Liu Heping, Miao Yiru, et al.Cascaded DC-DC converter stability control method based on paralleling virtual resistor[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3927-3937. [50] 徐伟, 陈俊杰, 刘毅. 无刷双馈独立发电系统的改进无参数预测电流控制[J/OL]. 电力系统自动化. [2021-08-15].https://doi.org/10.19595/j.cnki.1000-6753.tces.200749. Xu Wei, Chen Junjie, Liu Yi.Improved nonparametric predictive current control for standalone brushless doubly-fed induction generators[J/OL]. Automation of Electric Power Systems, [2021-08-15].https:// doi.org /10.19595/j.cnki.1000-6753.tces.200749. [51] 涂春鸣, 高家元, 赵晋斌, 等. 弱电网下具有定稳定裕度的并网逆变器阻抗重塑分析与设计[J]. 电工技术学报, 2020, 35(6): 1327-1335. Tu Chunming, Gao Jiayuan, Zhao Jinbin, et al.Analysis and design of grid-connected inverter impedance remodeling with fixed stability margin in weak grid[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1327-1335. [52] 徐海亮, 聂飞, 王诗楠. 弱电网下永磁风机网侧变流器频率耦合效应关键作用因子评估及控制对策[J]. 电网技术, 2021, 45(5): 1687-1697. Xu Hailiang, Nie Fei, Wang Shinan.Key factors evaluation and suppression strategy of frequency-coupling mechanism for PMSG grid-side converter in weak AC grid[J]. Power System Technology, 2021, 45(5): 1687-1697.