Integration Design of High-Temperature Superconducting Bearing and Electromagnetic Thrust Bearing for Flywheel Energy Storage System
Li Wanjie1,2,3,4, Zhang Guomin1,3, Wang Xinwen1,2,3, Qiu Qingquan1,3
1. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100049 China; 3. Key Laboratory of Applied Superconductivity Chinese Academy of Sciences Beijing 100190 China; 4. Xi’an XD Electrical Research Institute Co. Ltd Xi’an 710075 China
Abstract:A structure design of hybrid magnetic bearing (HMB), which integrates radial type superconducting magnetic bearing (SMB) with axial type active electromagnetic bearing (AMB), was proposed to sustain the flywheel rotor of the superconducting flywheel energy storage system. The levitation force was simulated using the multi-physical field analysis software Comsol. Under the condition of definite outer-diameter of outer ring and inner-diameter of inner ring of the stator parameters, the optimal structure parameters of the electromagnetic bearing were designed with the goal of maximum magnetic force using the finite element software Ansys Maxwell. And the influence of key performance parameters between the SMB and AMB were also analyzed. The prototype was developed,the measurement experiments were conducted and the advantages were compared with other schemes. The results show that making use of SMB’s self-stabilization, the change rate of HMB levitation force with air-gap increase and the response rate of the AMB controller can be reduced; the heat of AMB coils can be effectively dissipated by taking liquid nitrogen as cooling medium; the integration structure design can improve the levitation force-to-volume ratio. And the effectiveness is validated.
李万杰, 张国民, 王新文, 邱清泉. 飞轮储能系统用超导电磁混合磁悬浮轴承设计[J]. 电工技术学报, 2020, 35(zk1): 10-18.
Li Wanjie, Zhang Guomin, Wang Xinwen, Qiu Qingquan. Integration Design of High-Temperature Superconducting Bearing and Electromagnetic Thrust Bearing for Flywheel Energy Storage System. Transactions of China Electrotechnical Society, 2020, 35(zk1): 10-18.
[1] 吴杉伟. 基于600Wh飞轮储能系统的电磁轴承性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. [2] 冯奕, 颜建虎. 基于飞轮储能的风力发电系统仿真[J]. 电力系统保护与控制, 2016, 44(20): 94-98. Feng Yi, Yan Jianhu.Simulation of wind energy generation system with flywheel storage system[J]. Power System Protection and Control, 2016, 44(20): 94-98. [3] 韩笑, 周明, 李庚银. 计及储能和空调负荷的主动配电网多目标优化调度[J].电力系统保护与控制, 2018, 46(7): 14-23. Han Xiao, Zhou Ming, Li Gengyin.Multi-objective optimal dispatching of active distribution networks considering energy storage systems and air- conditioning loads[J]. Power System Protection and Control, 2018, 46(7): 14-23. [4] 代燕杰. 磁悬浮轴承的电磁性能分析及结构设计[D]. 济南: 山东大学, 2008. [5] 曹鑫, 孙琴, 赵贺, 等. 基于高频脉冲注入的无轴承开关磁阻电机转子位置与径向位移检测方法[J]. 电工技术学报, 2017, 32(3): 113-119. Cao Xin, Sun Qin, Zhao He, et al.Detecting method of rotor angle position and radial displacement for bearingless switched reluctance motors with the high-frequency pulse injection[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 113-119. [6] 陈亮亮, 祝长生, 王忠博. 基于逆系统解耦的电磁轴承飞轮转子系统二自由度控制[J]. 电工技术学报, 2017, 32(23): 100-114. Chen Liangliang, Zhu Changsheng, Wang Zhongbo.Two-degree-of-freedom control for active magnetic bearing flywheel rotor system based on inverse system decoupling[J]. Transactions of China Electro- technical Society, 2017, 32(23): 100-114. [7] 于洁, 祝长生, 余忠磊. 考虑涡流的自传感主动电磁轴承转子位置估计策略[J]. 电工技术学报, 2018, 33(9): 1946-1956. Yu Jie, Zhu Changsheng, Yu Zhonglei.Rotor position estimation strategy for self-sensing active magnetic bearing considering eddy currents[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1946-1956. [8] 孙权贵, 邓智泉, 张忠明. 基于齿槽效应的高速永磁电机转子涡流损耗解析计算[J]. 电工技术学报, 2018, 33(9): 1994-2004. Sun Quangui, Deng Zhiquan, Zhang Zhongming.Analytical calculation of rotor eddy current losses in high speed permanent magnet machines accounting for influence of slot opening[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1994-2004. [9] 孙首善, 郑国权. 电磁-温度耦合条件下推力磁轴承涡流损耗分析[J]. 上海理工大学学报, 2005, 27(3): 194-198. Sun Shoushan, Zheng Guoquan.Analysis of eddy current loss in thrust magnetic bearing considering electromagneto temperature coupling[J]. Journal of University of Shanghai for Science and Technology, 2005, 27(3): 194-198. [10] 余志强, 张国民, 邱清泉, 等. 高温超导飞轮储能系统的发现现状[J].电工技术学报, 2013, 28(12): 109-119. Yu Zhiqiang, Zhang Guomin, Qiu Qingquan, et al.Development status of magnetic levitation flywheel energy storage system based on high-temperature superconductor[J]. Transactions of China Electro- technical Society, 2013, 28(12): 109-119. [11] 戴兴建, 姜新建, 王秋楠, 等. 1MW/60MJ飞轮储能系统设计与实验研究[J]. 电工技术学报, 2017, 31(21): 169-175. Dai Xingjian, Jiang Xinjian, Wang Qiunan, et al.The design and testing of a 1MW/60MJ flywheel energy storage power system[J]. Transactions of China Electrotechnical Society, 2017, 31(21): 169-175. [12] 赵晗彤, 张建成. 基于滑模控制的飞轮储能稳定光伏微网离网运行母线电压策略的研究[J]. 电力系统保护与控制, 2016, 44(16): 36-42. Zhao Hantong, Zhang Jiancheng.Research on bus voltage control strategy of off-grid PV microgrid with flywheel energy storage system based on sliding mode control[J]. Power System Protection and Control, 2016, 44(16): 36-42. [13] 刘伟, 王素玉, 叶长青, 等. 预载过程对YBCO块材磁体驰豫特性的影响[J]. 低温物理学报, 2014, 36(1): 65-69. Liu Wei, Wang Suyu, Ye Changqing, et al.Influence of preload process on the relaxation performance of magnetized bulk YBCO[J]. Chinese Journal of Low Temperature Physics, 2014, 36(1): 65-69. [14] 邱傅杰, 徐克西, 盛培龙. 小型飞轮储能系统高温超导磁悬浮轴承[J]. 电工技术学报, 2014, 29(1): 181-186. Qiu Fujie, Xu Kexi, Sheng Peilong.Small-scale flywheel energy storage system equipped with high temperature superconducting magnetic bearing[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 181-186. [15] Morandi A, Perini E, Giunchi G, et al.Numerical analysis and experimental measurements of magnetic bearings based on hollow cylinders[J]. IEEE Transaction on Applied Superconductivity, 2011, 21(3): 1146-1151. [16] 余志强, 张国民, 邱清泉, 等. 基于3D有限元法的圆柱形永磁体与高温超导体悬浮特性的数字仿真[J]. 电工技术学报, 2015, 30(13): 32-38. Yu Zhiqiang, Zhang Guomin, Qiu Qingquan, et al.Numerical simulation of levitation characteristics of a cylindrical permanent magnet and a high-temperature superconductor based on the 3D finite-element method[J]. Transactions of China Electrotechnical Society, 2015, 30(13): 32-38. [17] 董鲁宁, 钱婧, 王澄泓, 等. 电磁推力轴承磁路计算方法的改进[J]. 上海大学学报: 自然科学版, 2005, 11(4): 375-380. Dong Luning, Qian Jing, Wang Chenghong, et al.Improving magnetic circuit calculation for magnetic thrust bearing[J]. Journal of Shanghai University: Natural Science, 2005, 11(4): 375-380. [18] 唐明, 祝长生, 于洁. 非磁饱和偏置下自传感主动电磁轴承的转子位移协同估计[J]. 电工技术学报, 2014, 29(5): 205-212. Tang Ming, Zhu Changsheng, Yu Jie.Cooperative rotor position estimation of active magnetic bearings with unsaturated magnetic bias[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 205-212. [19] 郑坚强. 电磁轴承有限元分析、结构设计及控制[D]. 杭州: 浙江大学, 2004. [20] 龚曙光. Ansys参数化编程与命令手册[M]. 北京: 机械工业出版社, 2009. [21] 刘国强, 赵凌志. ANSOFT工程电磁场有限元分析[M]. 北京: 电子工业出版社, 2005.