Abstract:When the fault occurs in the power system, the electric quantity information such as the current and voltage, is changed primarily, and is better in instantaneity, accuracy and completeness than the switching value information. In this paper, for the existing phenomenon of over-envelope and under-envelope of Hilbert-Huang transform (HHT) in fault feature extraction on current signals, three Binary subdivision method was used to improve the Hilbert-Huang transform. By comparing the results of Hilbert marginal spectrum and amplitude and frequency distortion degree by improved HHT and HHT, it was shown that the faulty component diagnosis result obtained by the improved HHT processing has higher accuracy and reliability, and avoids the uncertainty caused by the use of the switch quantity information. The experimental results show that the local subdivision cubic spline interpolation method can improve the over-envelope and under-envelope phenomena of Hilbert-Huang transform, and improve the accuracy of grid fault diagnosis results.
[1] 张纯江, 董杰, 刘君, 等. 蓄电池与超级电容混合储能系统的控制策略[J]. 电工技术学报, 2014, 29(4): 334-340. Zhang Chunjiang, Dong Jie, Liu Jun, et al.A control strategy for battery-ultracapacitor hybrid energy storage system[J]. Transactions of China Electro- technical Society, 2014, 29(4): 334-340. [2] Herrera V I, Gaztañaga H, Milo A, et al.Optimal energy management and sizing of a battery- supercapacitor-based light rail vehicle with a multiobjective approach[J]. IEEE Transactions on Industry Applications, 2016, 52(4): 3367-3377. [3] Carter R, Cruden A, Hall P J.Optimizing for efficiency or battery life in a battery/supercapacitor electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2012, 61(4): 1526-1533. [4] Fu Zhumu, Wang Bin, Zhou Pengge.An improved logic threshold approach of energy management for a power-split hybrid electric vehicle[C]//International Conference on Advanced Mechatronic Systems, Luoyang, China, 2013: 244-248. [5] 李逢兵. 含锂电池和超级电容混合储能系统的控制与优化研究[D]. 重庆: 重庆大学, 2015. [6] 丁若星, 董戈, 吴和平, 等. 混合储能系统功率分配效果的表征参数研究[J]. 电工技术学报, 2016, 31(增刊1): 184-189. Ding Ruoxing, Dong Ge, Wu Heping, et al.Research on power sharing results parameterization of hybrid energy storage system[J]. Transactions of China Electrotechnical Society 2016, 31(S1): 184-189. [7] 张坤, 吴建东, 毛承雄, 等. 基于模糊算法的风电储能系统的优化控制[J]. 电工技术学报, 2012, 27(10): 235-241. Zhang Kun, Wu Jiandong, Mao Chengxiong, et al.Optimal control of energy storage system for wind power generation based on fuzzy algorithm[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 235-241. [8] 柴炜, 李征, 蔡旭, 等. 基于使用寿命模型的大容量电池储能系统变步长优化控制方法[J]. 电工技术学报, 2016, 31(14): 58-66. Chai Wei, Li Zheng, Cai Xu.Variable step-size control method of large capacity battery energy storage system based on the life model[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 58-66. [9] Gong Qiuming, Li Yaoyu, Peng Zhiongren.Trip- based optimal power management of plug-in hybrid electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2008, 57(6): 3393-3401. [10] Shen Junyi, Khaligh A.Predictive control of a battery/ultracapacitor hybrid energy storage system in electric vehicles[C]//2016 IEEE Transportation Electrification Conference and Expo, Dearborn, MI, USA, 2016: 1-6. [11] Bashash S, Fathy H K.Cost-optimal charging of plug-in hybrid electric vehicles under time-varying electricity price signals[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 1958-1968. [12] Murphey Y L, Park J, Kiliaris L, et al.Intelligent hybrid vehicle power control—part II: online intelligent energy management[J]. IEEE Transactions on Vehicular Technology, 2013, 62(1): 69-79. [13] Yi L M, Chen Zhihang, Kiliaris L, et al.Neural learning of driving environment prediction for vehicle power management[C]//IEEE International Joint Conference on Neural Networks, Hong Kong, 2008: 3755-3761. [14] Liu Jichao, Chen Yangzhou, Zhan Jingyuan, et al.An on-line energy management strategy based on trip condition prediction for commuter plug-in hybrid electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, DOI: 10.1109/TVT.2018.2815764. [15] Sun Chao, Hu Xiaosong, Moura S J, et al.Velocity predictors for predictive energy management in hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology, 2015, 23(3): 1197-1204. [16] Johnson V H.Battery performance models in ADVISOR[J]. Journal of Power Sources, 2002, 110(2): 321-329. [17] Omar N, Mierlo J V, Verbrugge B, et al.Power and life enhancement of battery-electrical double layer capacitor for hybrid electric and charge-depleting plug-in vehicle applications[J]. Electrochimica Acta, 2010, 55(25): 7524-7531. [18] 诸斐琴, 杨中平, 林飞, 等. 基于加速时间预测的现代有轨电车储能系统能量管理与容量配置优化研究[J]. 电工技术学报, 2017, 32(23): 158-166. Zhu Feiqin, Yang Zhongping, Lin Fei, et al.Research on acceleration-time-prediction-based energy management and optimal sizing of onboard energy management system for modern trams[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 158-166. [19] 颜宁, 厉伟, 邢作霞, 等. 复合储能在主动配电网中的容量配置[J]. 电工技术学报, 2017, 32(19): 180-186. Yan Ning, Li Wei, Xing Zuoxia, et al.Capacity allocation method in active distribution network based on hybrid energy storage[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 180-186.