Eddy Current Loss Calculation of Dry-Type Air-Core Reactor Based on Radial Basis Function Neural Network
Chen Feng1, Wang Jiawei1, Wu Menghan2, Ma Xikui1
1.State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China ;
2. Shanghai Sieyuan Electric Corporation Limited Shanghai 201100 China
Based on numerical simulations,the structural parameters of dry-type air-core reactor were analyzed for the effect on eddy current losses. A unified model in engineering practice was then proposed to consider the fit scheme of winding cross section, the shape of conductor cross section, the airway width, and the number of layers per package. In order to improve the computational accuracy of reactor eddy current losses, a radial basis function(RBF) neural network model was established, in which the exponential function was determined as the activation function according to the relationship between the input and output variables. Moreover, an improved particle swarm algorithm for optimizing network parameters was presented. Numerical results indicate that the proposed model exhibits the highest precision and best computational performance. As a result, this model applies especially to the optimum design of dry-type air-core reactors.
陈锋, 王嘉玮, 吴梦晗, 马西奎. 基于RBF神经网络的干式空心电抗器涡流损耗计算[J]. 电工技术学报, 2018, 33(11): 2545-2553.
ChenFeng, WangJiawei, Wu Menghan, Ma Xikui. Eddy Current Loss Calculation of Dry-Type Air-Core Reactor Based on Radial Basis Function Neural Network. Transactions of China Electrotechnical Society, 2018, 33(11): 2545-2553.
[1] 虞振洋, 王世山. 基于有限元模型重构的多物理场耦合空心电抗器优化设计[J]. 电工技术学报, 2015, 30(20): 71-78.
Yu Zhenyang, Wang Shishan.Optimum design of dry-type air-core reactor based on coupled multiphysics of reconstructed finite element model[J]. Transactions of China Electrotechnical Society, 2015, 30(20): 71-78.
[2] 张成芬, 赵彦珍, 陈锋, 等. 基于改进NSGA-Ⅱ算法的干式空心电抗器多目标优化设计[J]. 中国电机工程学报, 2010, 30(18): 115-121.
Zhang Chengfen, Zhao Yanzhen, Chen Feng, et al.Muti-objective optimum design of dry-type air-core reactor based on improved NSGA-Ⅱ algorithm[J]. Proceedings of the CSEE, 2010, 30(18): 115-121.
[3] 陈锋, 赵彦珍, 马西奎. 基于设计变量重构的干式空心电抗器优化设计方法[J]. 中国电机工程学报, 2009, 29(21): 99-106.
Chen Feng, Zhao Yanzhen, Ma Xikui.Optimum design of dry-type air-core reactor based on design variable reconstuction[J]. Proceedings of the CSEE, 2009, 29(21): 99-106.
[4] 马超, 赵彦珍, 马西奎. 基于等电流相位法的单相干式空心电抗器设计[J]. 电工技术学报, 2017, 32(10): 190-195.
Ma Chao, Zhao Yanzhen, Ma Xikui.Design method based on layer current phase equality in single-phase dry-type air-core reactor[J]. Transactions of China ElectrotechnicalSociety, 2017, 32(10): 190-195.
[5] 鲍晓华, 张程, 胡云鹏. 空心电抗器的复合被动屏蔽结构的电磁性能分析[J]. 电工技术学报, 2015, 31(增刊1): 68-75.
Bao Xiaohua, Zhang Cheng, Hu Yunpeng.Analytic calculation of electromagnetic performance of magnetic field of air-core reactor[J]. Transactions of China ElectrotechnicalSociety, 2016, 31(S1): 68-75.
[6] 姜志鹏, 文习山, 王羽, 等. 特高压干式空心平波电抗器温度场耦合计算与试验[J]. 中国电机工程学报, 2015, 35(20): 5344-5350.
Jiang Zhipeng, Wen Xishan, Wang Yu, et al.Test and coupling calculation of temperature field for UHV dry-type air-core smoothing reactor[J]. Proceedings of the CSEE, 2015, 35(20): 5344-5350.
[7] 张猛, 王国金, 张月华, 等. ±1100 kV特高压干式平波电抗器绝缘设计与试验分析[J]. 高电压技术, 2015, 41(5): 1760-1768.
Zhang Meng, Wang Guojin, Zhang Yuehua, et al.Insulation design and test analysis of ±1100 kV UHV dry-type smoothing reactor[J]. High Voltage Engineering, 2015, 41(5): 1760-1768.
[8] 阎秀恪, 杨桂平, 洛君婷, 等. 空心电力电抗器的磁场研究与环流计算[J]. 变压器, 2010, 47(6): 1-4.
Yan Xiuke, Yang Guiping, Luo Junting, et al.Magnetic field research and circulating current calculation of power reactor with air core[J]. Transformer, 2010, 47(6): 1-4.
[9] 周延辉, 赵振刚, 李英娜, 等. 光纤光栅在干式空心电抗器固化中的应变监测研究[J].电工技术学报, 2015, 30(13): 27-31.
Zhou Yanhui, Zhao Zhengang, Li Yingna, et al.Strain monitoring with fiber grating for dry-type air-core reactor solidification[J]. Transactions of China Electrotechnical Society, 2015, 30(13): 27-31.
[10] 姜志鹏, 周辉, 宋俊燕, 等. 干式空心电抗器温度场计算与试验分析[J]. 电工技术学报, 2017, 32(3): 218-224.
Jiang Zhipeng, Zhou Hui, Song Junyan, et al.Temperature field calculation and experimental analysis of dry-type air-core reactor[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 218-224.
[11] 周延辉, 赵振刚, 李英娜, 等. 埋入35kV干式空心电抗器的光纤布拉格光栅测温研究光纤光栅在干式空心电抗器固化中的应变监测研究[J]. 电工技术学报, 2015, 30(5): 142-146.
Zhou Yanhui, Zhao Zhengang, Li Yingna, et al.The study on the temperature measurement for the 35kV dry-type air-core reactor with the embedded optical fiber brag grating[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 142-146.
[12] Dowell P L.Effects of eddy currents in transformer windings[J]. Proceedings of the Institution of Electrical Engineers, 1966, 113(8): 1387-1394.
[13] Vandelac J P, Ziogas P D.A novel approach for minimizing high-frequency transformer copper losses[J]. IEEE Transactions on Power Electronics, 1988, 3(3): 266-277.
[14] Robert F.A theoretical discussion about the layer copper factor used in winding losses calculation[J]. IEEE Transactions on Magnetics, 2002, 38(5): 3177-3179.
[15] Ferreira J A.Improved analytical modeling of conductive losses in magnetic components[J]. IEEE Transactions on Power Electronics, 1994, 9(1): 127-131.
[16] Fraga E, Prados C, Chen D X.Practical model and calculation of AC resistance of long solenoids[J]. IEEE Transactions on Magnetics, 1998, 34(1): 205-212.
[17] Robert F, Mathys P, Schauwers J P.A closed-form formula for 2-D ohmic losses calculation in SMPS transformer foils[J]. IEEE Transactions on Power Electronics, 2001, 16(3): 437-444.
[18] Dimitrakakis G S, Tatakis E C.High-frequency copper losses in magnetic components with layered windings[J]. IEEE Transactions on Magnetics, 2009, 45(8): 3187-3199.
[19] Robert F, Mathys P, Schauwers J P.Ohmic losses calculation in SMPS transformers: numerical study of Dowell's approach accuracy[J]. IEEE Transactions on Magnetics, 1998, 34(4): 1255-1257.
[20] Robert F, Mathys P, Velaerts B, et al.Two-dimensional analysis of the edge effect field and losses in high-frequency transformer foils[J]. IEEE Transactions on Magnetics, 2005, 41(8): 2377-2383.
[21] 魏新劳, 麻森. 多层并联空心电力电抗器磁场的解析计算方法[J]. 变压器, 1993, 30(2): 12-15.
Wei Xinlao, Ma Sen.Analytic solution for magnetic field of multi-layer parallel connected air-core power reactors[J]. Transformer, 1993, 30(2): 12-15.
[22] Kutkut N H.A simple technique to evaluate winding losses including two-dimensional edge effects[J]. IEEE Transactions on Power Electronics, 1998, 13(5): 950-958.
[23] Robert F, Mathys P, Schauwers J P.A closed-form formula for 2-D ohmic losses calculation in SMPS transformer foils[J]. IEEE Transactions on Power Electronics, 2001, 16(3): 437-444.
[24] Dimitrakakis G S, Tatakis E C, Rikos E J.A semiempiricalmodel to determine HF copper losses in magnetic components with non-layered coils[J]. IEEE Transactions on Power Electronics, 2008, 23(6): 2719-2728.
[25] 汪泉弟, 张艳, 李永明, 等. 干式空心电抗器周围工频磁场分布[J]. 电工技术学报, 2009, 24(1): 8-13.
Wang Quandi, Zhang Yan, Li Yongming, et al.The power frequency magnetic field distribution around dry-type air-core reactor[J]. Transactions of China Electrotechnical Society, 2009, 24(1): 8-13.
[26] 史忠植. 神经网络[M]. 北京: 高等教育出版社, 2009.
[27] Kennedy J, Eberhart R.Particle swarm optimization[J]. IEEE International Conference on Neural Networks, 2002, 4(8): 1942-1948.
[28] Qasem S N, Shamsuddin S M H. Improving performance of radial Basis function network based with particle swarm optimization[C]//IEEE Congress on Evolutionary Computation, Trondheim, Norway, 2009: 3149-3156.
[29] Mhamdi B, Grayaa K, Aguili T.An inverse scattering approach using hybrid PSO-RBF network for microwaveimaging purposes[C]//16th IEEE International Conferenceon Electronics, Circuits, and Systems, YasmineHammamet, Tunisia, 2009: 231-234.
[30] Qasem S N, Shamsuddin S M H. Improving generalization of radial basis function network with adaptive multi-objective particle swarm optimization[C]//IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 2009: 534-540.