Design of Repetitive Nanosecond Pulse Generator Based on Modularized Marx Circuit and Transmission Line Transformer
Li Jiangtao1, Zhao Zheng1, Zhong Xu2, Cao Hui1, Zheng Minjun1
1. School of Electrical Engineering Xi’an Jiaotong University Xi’an 710049 China; 2. Tianfu Electric Power Supply Company State Grid Sichuan Electric Power Company Chengdu 610041 China
Abstract:Atmospheric pressure plasma discharge excited by repetitive nanosecond pulsed voltage has high reactive ability. A repetitive nanosecond pulse generator was designed based on the modularized avalanche transistor Marx circuit and transmission line transformer (TLT). The delay time and jitter of output pulse waveform of different Marx modules were calculated. The impacts of magnetic cores quantity, position and dimension on the output pulse amplitude were analyzed. The pulse combination efficiency of TLT was remarkably improved by increasing the induction, increasing the ratio of outer diameter to inner diameter of magnetic cores and adopting magnetic cores on the first and top stages. Utilizing both the direct combination and TLT, the amplitude of output pulse was further improved. The generator can produce 2~14kV pulses into 50~300W resistive load and 4~25kV pulses into high impedance load, where the pulses have 3.8ns rise time, 7~15ns pulse width and 0~10kHz repetitive frequency. The output parameters of the compact generator can be adjusted flexibly.
李江涛, 赵政, 钟旭, 曹辉, 郑敏军. 基于模块化Marx电路和传输线变压器的重频纳秒脉冲源设计[J]. 电工技术学报, 2017, 32(8): 121-128.
Li Jiangtao, Zhao Zheng, Zhong Xu, Cao Hui, Zheng Minjun. Design of Repetitive Nanosecond Pulse Generator Based on Modularized Marx Circuit and Transmission Line Transformer. Transactions of China Electrotechnical Society, 2017, 32(8): 121-128.
[1] 高远, 张帅, 刘峰, 等. 脉冲介质阻挡放电等离子体催化CH 4 直接转化[J]. 电工技术学报, 2017, 32(2): 61-69. Gao Yuan, Zhang Shuai, Liu Feng, et al. Plasma enhanced CH 4 direct conversion in pulsed dielectric barrier discharges[J]. Transactions of China Electro- technical Society, 2017, 32(2): 61-69. [2] 姜慧, 邵涛, 章程, 等. 不同电极间距下纳秒脉冲表面介质阻挡放电分布特性[J]. 电工技术学报, 2017, 32(2): 33-42. Jiang Hui, Shao Tao, Zhang Cheng, et al. Distribution characteristics of nanosecond-pulsed surface dielectric barrier discharge at different electrode gaps[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 33-42. [3] Chang Z S, Jiang N, Zhang G J, et al. Influence of Penning effect on the plasma features in a non- equilibrium atmospheric pressure plasma jet[J]. Journal of Applied Physics, 2014, 115(10): 103301. [4] 李和平, 王志斌, 乐沛思, 等. 平板型与同轴型等离子体发生器射频大气压辉光放电特性分析[J]. 高电压技术, 2012, 38(7): 1588-1594. Li Heping, Wang Zhibin, Le Peisi, et al. Characteri- stics of radio frequency atmospheric pressure glow discharges with different electrode configurations[J]. High Voltage Engineering, 2012, 38(7): 1588-1594. [5] 董守龙, 姚陈果, 杨楠, 等. 基于Marx电路的全固态纳秒脉冲等离子体射流装置的研制[J]. 电工技术学报, 2016, 31(24): 35-44. Dong Shoulong, Yao Chenguo, Yang Nan, et al. The development of solid-state nanosecond pulsed plasma jet apparatus based on Marx structure[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(24): 35-44. [6] Lu X P. Effects of gas temperature and electron temperature on species concentration of air plasmas[J]. Journal of Applied Physics, 2007, 102(3): 033302. [7] Laroussi M, Tendero C, Lu X, et al. Inactivation of bacteria by the plasma pencil[J]. Plasma Processes and Polymers, 2006, 3(6-7): 470-473. [8] 邵涛, 章程, 于洋,等. 空气中纳秒脉冲均匀介质阻挡放电研究[J]. 高电压技术, 2012, 38(5): 1045- 1050. Shao Tao, Zhang Cheng, Yu Yang, et al. Study on Homogeneous nanosecond pulse dielectric barrier discharge in atmospheric air[J]. High Voltage Engin- eering, 2012, 38(5): 1045-1050. [9] 章程, 邵涛, 龙凯华, 等. 大气压空气中纳秒脉冲介质阻挡放电均匀性的研究[J]. 电工技术学报, 2010, 25(1): 30-36. Zhang Cheng, Shao Tao, Long Kaihua, et al. Uniform of unipolar nanosecond pulse DBD in atmospheric air[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 30-36. [10] Boselli M, Colombo V, Gherardi M, et al. Characterization of a cold atmospheric pressure plasma jet device driven by nanosecond voltage pulses[J]. IEEE Transactions on Plasma Science, 2015, 43(3): 713-725. [11] Jiang W H. Solid-state LTD module using power MOSFETs[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2730-2733. [12] 袁雪林, 梁步阁, 吕波, 等. 探地雷达高功率高稳定度脉冲源设计[J]. 强激光与粒子束, 2007, 19(10): 1689-1692. Yuan Xuelin, Liang Buge, Lü Bo, et al. High-power and high-stability pulser for ground penetrating radar[J]. High Power Laser and Particle Beams, 2007, 19(10): 1689-1692. [13] Li J T, Zhong X, Cao H, et al. Development of a stereo-symmetrical nanosecond pulsed power gener- ator composed of modularized avalanche transistor Marx circuits[J]. Review of Scientific Instruments, 2015, 86(9): 093502. [14] Xuelin Y, Hongde Z, Yang B, et al. 4kV/30kHz short pulse generator based on time-domain power com- bining[C]//IEEE International Conference on Ultra- wideband, Nanjing, China, 2010: 1-4. [15] Wang S S, Yang H W, Shu T. A four-stage high-voltage transmission line pulse transformer for transforming a quasi-rectangular pulse[J]. IEEE Transa- ctions on Plasma Science, 2013, 41(3): 585-589. [16] 石小燕, 曹晓阳, 梁勤金, 等. 多路窄脉冲功率线路合成[J]. 强激光与粒子束, 2010, 22(4): 769-772. Shi Xiaoyan, Cao Xiaoyang, Liang Qinjin, et al. Power synthesization of multi-channel narrow pulses by circuitry[J]. High Power Laser and Particle Beams, 2010, 22(4): 769-772. [17] 李江涛, 钟旭, 薛静, 等. 全固态模块化MARX电路及脉冲同步叠加设计[J]. 强激光与粒子束, 2015, 27(9): 236-242. Li Jiangtao, Zhong Xu, Xue Jing, et al. Design of all-solid-state modularized Marx circuit and synchronous combining of pulses[J]. High Power Laser and Particle Beams, 2015, 27(9): 236-242. [18] Li J T, Zhong X, Li J, et al. Theoretical analysis and experimental study on an avalanche transistor based marx generator[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3399-3405. [19] Graneau P N, Rossi J O, Brown M P, et al. A high- voltage transmission-line pulse transformer with very low droop[J]. Review of Scientific Instruments, 1996, 67(7): 2630-2635. [20] Yan K, van Heesch E J M, Pemen A J M, et al. A high-voltage pulse generator for corona plasma generation[J]. IEEE Transactions on Industry Appli- cations, 2002, 38(3): 866-872.