A Modified Thermal Rewind Model of Permanent Magnet Motors Based on Finite Formulation Method
Zhu Gaojia1, Zhu Yinghao1, Zhu Jianguo2, Tong Wenming1, Han Xueyan1
1. National Engineering Research Center for Rare Earth Permanent Magnet Machine Shenyang University of Technology Shenyang 110870 China; 2. University of Technology Sydney Sydney NSW 2007 Australia
Abstract:The amorphous alloy (AA) lamination has attracted extensive research attentions in motor design because of its superior characteristics of high magnetic conductivity and low power loss density. Since the motors utilizing AA cores are mostly operated under the frequency conversion control systems, the heat generated may cause high temperature rises and limit the thrust output. The field analysis of thermal behavior of a 7kW axial flux permanent magnet (AFPM) motor with an AA core is embedded with a double-circulation procedure. The inner loop of the system is used to verify the fluid temperature. The outer loop is used to judge veracity of losses, heat conductivity coefficients, and heat convection coefficients. The temperature field analysis technique based on cell method (CM), also known as finite formulation method (FFM), is modified to simplify the rewind process of heat conductivity coefficients and reduce the computing work introduced by iteration. The calculation system is validated by experiments, and proves to be a valid and simple candidate for temperature distribution analysis of AFPM motors utilizing AA cores.
[1] Wang Z N, Ryoso M, Shigeki M, et al. Development of an axial gap motor with amorphous mental cores[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1293-1299. [2] Maria D, Krzysztof K. Performance characteristics of a high-speed energy-saving induction motor with an amorphous stator core[J]. IEEE Transactions on Industry Electronics, 2014, 61(6): 3046-3055. [3] 张凤阁, 杜光辉, 王天煜. 1.12MW高速永磁电机多物理场综合设计[J]. 电工技术学报, 2015, 30(12): 171-180. Zhang Fengge, Du Guanghui, Wang Tianyu. Integrated design of 1.12MW high speed PM machine based on multi-physics fields[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 171- 180. [4] 唐任远, 陈萍, 佟文明, 等. 考虑涡流反作用的永磁涡流损耗解析计算[J]. 电工技术学报, 2015, 30(24): 1-10. Tang Renyuan, Chen Ping, Tong Wenming, et al. Analytical calculation of eddy current loss accounting for eddy current reaction[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 1-10. [5] 唐任远. 现代永磁电机——理论与设计[M]. 北京: 机械工业出版社, 2011. [6] Chen Q, Yang X. Calculation analysis of thermal loss and temperature field of in-wheel motor in micro- electric vehicle[J]. Journal of Mechanical Science & Technology, 2014, 28(8): 3189-3195. [7] Sim K, Lee Y B, Jang S M, et al. Thermal analysis of high-speed permanent magnet motor with cooling flows supported on gas foil bearings: part I - coupled thermal and loss modeling[J]. Journal of Mechanical Science & Technology, 2015, 29(12): 5469-5476. [8] 冶金工业部钢铁研究院. 合金钢手册[M]. 北京: 冶金工业出版社, 1972. [9] Touloutian Y S, Powell R W, Ho C Y, et al. Thermal physical properties of matter—the TPRC data series[M]. New York: Books on Demand, 1977. [10] 徐宝东. 化工管路设计手册[M]. 北京: 化学工业出版社, 2011. [11] Lu Q F, Zhang X M, Chen Y, et al. Modeling and investigation of thermal characteristics of a water- cooled permanent-magnet linear motor[J]. IEEE Transactions on Industry Applications, 2015, 51(3): 2086-2096. [12] 章熙民, 任泽霈, 梅飞鸣. 传热学[M]. 北京: 中国建筑工业出版社, 2007. [13] Rohsenow W M, Hartnett J P. Handbook of heat transfer[M]. New York: McGraw-Hill, 1983. [14] B. Π. 伊萨琴科. 传热学[M]. 北京: 高等教育出版社, 1987. [15] Moro F, Alotto P, Freschi F, et al. A cell method formulation of 3-D electrothermomechanical contact problems with mortar discretization[J]. IEEE Transa- ctions on Magnetics, 2012, 48(2): 503-506. [16] Alotto P, Guarnieri M, Moro F. A mortar cell method for electro-thermal contact problems[J]. IEEE Transactions on Magnetics, 2013, 49(2): 795-798. [17] 佟文明, 舒圣浪, 朱高嘉, 等. 基于有限公式法的水冷永磁同步电机三维温度场分析[J]. 电工电能新技术, 2016, 35(7): 36-41. Tong Wenming, Shu Shenglang, Zhu Gaojia, et al. 3D temperature field analysis of water-cooled permanent magnet synchronous motor based on finite formulation method[J]. Advanced Technology of Electrical Engineering and Energy, 2016, 35(7): 36-41. [18] 王晓远, 周晨. 基于PCB绕组的盘式永磁同步电机温度场分析与冷却方式研究[J]. 中国电机工程学报, 2016, 36(11): 3062-3069. Wang Xiaoyuan, Zhou Chen. Thermal analysis and cooling approach design of axial flux permanent magnet sychronous machines with PCB winding[J]. Proceedings of the CSEE, 2016, 36(11): 3062-3069. [19] 陈益广, 郑军, 魏娟, 等. 舵机用永磁同步电机的设计与温度场分析[J]. 电工技术学报, 2015, 30(14): 94-99. Chen Yiguang, Zheng Jun, Wei Juan, et al. Design of PMSM for actuator and its temperature field analysis[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 94-99. [20] 王晓远, 高鹏, 赵玉双. 电动汽车用高功率密度电机关键技术[J]. 电工技术学报, 2015, 30(6): 53-59. Wang Xiaoyuan, Gao Peng, Zhao Yushuang. Key technology of high power density motors in electric vehicles[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 53-59. [21] 陈世坤. 电机设计[M]. 北京: 机械工业出版社, 2011. [22] 黄国治, 傅丰礼. Y2系列三相异步电动机技术手册[M]. 北京: 机械工业出版社, 2004. [23] 陈萍, 唐任远, 佟文明, 等. 高功率密度永磁同步电机永磁体涡流损耗分布规律及其影响[J]. 电工技术学报, 2015, 30(6): 1-9. Chen Ping, Tang Renyuan, Tong Wenming, et al. Permanent magnet eddy current loss and its influence of high power density permanent magnet synchronous motor[J]. Transactions of China Electro- technical Society, 2015, 30(6): 1-9. [24] 胡田, 唐任远, 李岩, 等. 永磁风力发电机三维温度场计算及分析[J]. 电工技术学报, 2013, 28(3): 122-126. Hu Tian, Tang Renyuan, Li Yan, et al. Thermal analysis and calculation of permenent magnet wind generators[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 122-126. [25] 李立毅, 黄旭珍, 寇宝泉, 等. 基于有限元法的圆筒形直线电机温度场数值计算[J]. 电工技术学报, 2013, 28(2): 132-138. Li Liyi, Huang Xuzhen, Kou Baoquan, et al. Numerical calculation of temperature field for tubular linear motor based on finite element method[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 132-138. [26] 刘赟, 余集辉, 程鹏. 基于电磁-热耦合场的架空输电线路载流量分析与计算[J]. 电力系统保护与控制, 2015, 43(9): 28-34. Liu Yun, Yu Jihui, Cheng Peng. Analysis and calculation on the ampacity of overhead transmission lines based on electromagnetic-thermal coupling fields[J]. Power System Protection and Control, 2015, 43(9): 28-34. [27] 李明, 唐任远, 陈丽香. 螺杆泵永磁交流伺服电动机温升计算及分析[J]. 电气技术, 2012, 13(9): 5-8. Li Ming, Tang Renyuan, Chen Lixiang. Screw pump permanent magnet AC servo temperature of the motor calculation and analysis[J]. Electrical Engineering, 2012, 13(9): 5-8. [28] 王经. 传热学与流体力学基础[M]. 上海: 上海交通大学出版社, 2015. [29] 魏永田, 孟大伟, 温嘉斌. 电机内热交换[M]. 北京:机械工业出版社, 1998. [30] 侯兆然. 基于虚拟磁链定向的PWM整流器控制方法研究[J]. 电力系统保护与控制, 2014, 42(21): 105-109. Hou Zhaoran. Research on control method of PWM rectifier based on virtual flux orientation[J]. Power System Protection and Control, 2014, 42(21): 105- 109. [31] 刘月贤, 王天钰, 杨亚宇, 等. 电动汽车充放电系统建模与仿真[J]. 电力系统保护与控制, 2014, 42(13): 70-76. Liu Yuexian, Wang Tianyu, Yang Yayu, et al. Modeling and simulation of electric vehicles charge and discharge system[J]. Power System Protection and Control, 2014, 42(13): 70-76.