Abstract:Current methods,such as Copula theory,are inadequate to model multiple dependent wind power outputs accurately.Moreover,the point estimate method cannot handle the correlation among wind power outputs.Thus,an improved point estimate method based on Pair Copula and probability integral transformation is proposed for probabilistic load flow studies.The probabilistic model of multiple correlated wind power outputs is firstly constructed by Pair Copula.The point estimate method is then used to generate samples in the independent normal domain.Finally,based on the probability integral method,the samples are transformed into the actual probabilistic domain in order to find the characteristics of the power system operation.In this way,the point estimate method can handle multiple dependent wind generations with arbitrary distributions.The modeling and analysis for the power outputs of adjacent wind farms in Australia verify the goodness-of-fit of Pair Copula.The probabilistic load flow of the IEEE 118-bus system is solved to demonstrate the effectiveness of the proposed method.
[1] Global Wind Energy Council(GWEC).Global Wind Report 2013-annual market update[EB/OL].2014-05-11.http://www.gwec.net. [2] Wan Y H,Milligan M,Parsons B.Output power correlation between adjacent wind power plants[J].Journal of Solar Energy Engineering,2003,125(4):551-555. [3] 蒋程,刘文霞,张建华,等.含风电接入的发输电系统风险评估[J].电工技术学报,2014,29(2):260-270. Jiang Cheng,Liu Wenxia,Zhang Jianhua,et al.Risk assessment of generation and transmission systems considering wind power penetration[J].Transactions of China Electrotechnical Society,2014,29(2):260-270. [4] Borkowska B.Probabilistic load flow[J].IEEE Transactions on Power Apparatus and Systems,1974,93(3):752-759. [5] 陈芳,张利,韩学山,等.配电网线损概率评估及应用[J].电力系统保护与控制,2014,42(13):39-44. Chen Fang,Zhang Li,Han Xueshan,et al.Line loss evaluation and application in distribution network[J].Power System Protection and Control,2014,42(13):39-44. [6] 茆美琴,周松林,苏建徽.基于风光联合概率分布的微电网概率潮流预测[J].电工技术学报,2014,29(2):55-63. Mao Meiqin,Zhou Songlin,Su Jianhui.Probabilistic power flow forecasting of microgrid based on joint probability distribution about wind and irradiance[J].Transactions of China Electrotechnical Society,2014,29(2):55-63. [7] 董雷,杨以涵,张传成,等.综合考虑网络结构不确定性的概率潮流计算方法[J].电工技术学报,2012,27(1):210-216. Dong Lei,Yang Yihan,Zhang Chuancheng,et al.Probabilistic load flow considering network configuration uncertainties[J].Transactions of China Electrotechnical Society,2012,27(1):210-216. [8] 朱星阳,刘文霞,张建华.考虑大规模风电并网的电力系统随机潮流[J].中国电机工程学报,2013,33(7):77-85. Zhu Xingyang,Liu Wenxia,Zhang Jianhua.Probabilistic load flow method considering large-scale wind power integration[J].Proceedings of the CSEE,2013,33(7):77-85. [9] Hong H P.An efficient point estimate method for probabilistic analysis[J].Reliability Engineering & System Safety,1998,59(3):261-267. [10]刘小团,赵晋泉,罗卫华,等.基于TPNT和半不变量法的考虑输入量相关性概率潮流算法[J].电力系统保护与控制,2013,41(22):13-18. Liu Xiaotuan,Zhao Jinquan,Luo Weihua,et al.A TPNT and cumulants based probabilistic load flow approach considering the correlation variables[J].Power System Protection and Control,2013,41(22):13-18. [11]徐潇源,严正,冯冬涵,等.基于输入变量秩相关系数的概率潮流计算方法[J].电力系统自动化,2014,38(12):54-61. Xu Xiaoyuan,Yan Zheng,Feng Donghan,et al.Probabilistic load flow calculation based on rank correlation coefficient of input random variables[J].Automation of Electric Power Systems,2014,38(12):54-61. [12]蔡菲,严正,赵静波,等.基于 Copula 理论的风电场间风速及输出功率相依结构建模[J].电力系统自动化,2013,37(17):9-16. Cai Fei,Yan Zheng,Zhao Jingbo.Dependence structure models for wind speed and wind power among different wind farms based on copula theory[J].Automation of Electric Power Systems,2013,37(17):9-16. [13]蔡德福,石东源,陈金富.基于Copula理论的计及输入随机变量相关性的概率潮流计算[J].电力系统保护与控制,2013,41(20):13-19. Cai Defu,Shi Dongyuan,Chen Jinfu.Probabilistic load flow considering correlation between input random variables based on Copula theory[J].Power System Protection and Control,2013,41(20):13-19. [14]Zhang L,Cheng H,Zhang S,et al.A novel point estimate method for probabilistic power flow considering correlated nodal power[C].IEEE PES General Meeting|Conference & Exposition,National Harbor,MD,2014:1-5. [15]Berg D,Aas K.Models for construction of multivariate dependence-a comparison study[J].The European Journal of Finance,2009,15(7):639-659. [16]Nelsen R B.An Introduction to Copulas[M].New York:Springer,1999. [17]Soleimanpour N,Mohammadi M.Probabilistic load flow by using nonparametric density estimators[J].IEEE Transactions on Power Systems,2013,28(4):3747-3755. [18]Genest C,Rémillard B,Beaudoin D.Goodness-of-fit tests for copulas:a review and a power study[J].Insurance:Mathematics and economics,2009,44(2):199-213. [19]Berg D.Copula goodness-of-fit testing:an overview and power comparison[J].The European Journal of Finance,2009,15(7-8):675-701. [20]Aas K,Czado C,Frigessi A,et al.Pair Copula constructions of multiple dependence[J].Insurance:Mathematics and economics,2009,44(2):182-198. [21]Rosenblatt M.Remarks on a multivariate transformation[J].The Annals of Mathematical Statistics,1952,23(3):470-472. [22]Data[DB/OL].Sydney:AEMO,2010[2014-06-01].http://www.oz-energy-analysis.org/data/generation_wind_farms.php. [23]Brechmann E C,Czado C,Aas K.Truncated regular vines in high dimensions with application to financial data[J].Canadian Journal of Statistics,2012,40(1):68-85. [24]Power Systems Test Case Archive[DB/OL].Washington:University of Washington,1993[2014-11-01].http://www.ee.washington.edu/research/pstca.