Multi-model Fuzzy Synthesis Forecasting of Electric Power Loads for Larger Consumers
Gu Yundong1, Zhang Sujie1, Feng Junshu2
1.School of Mathematics and Physics North China Electric Power University Beijing 102206 China 2.School of Electrical and Electronic Engineering North China Electric Power University Beijing 102206 China
Abstract:A multi-model based variable weighted fuzzy synthesis forecasting method is proposed for the power load forecasting of large consumers.A clustering algorithm based on Renyi-entropy and centroid similarity is introduced to mining typical load patterns from historical load data and grouping them according to similarities as well as detecting atypical outliers.A conjugate gradient based learning algorithm for the RBF neural network is designed to construct unit forecasting model for each group of typical load patterns.Then,the forecasting results of all unit models are integrated adaptively by using variable weighted fuzzy synthesis inference.The simulation results show that the multi-model fuzzy synthesis forecasting method can raise the prediction accuracy and stability significantly.
[1] 李扬,王治华,卢毅,等.峰谷分时电价的实施及大工业用户的响应[J].电力系统自动化,2001,25(8):45-48. Li Yang,Wang Zhihua,Lu Yi,et al.The implementation of peak and valley time price for electricity and response of large industries[J].Automation of Electric Power Systems,2001,25(8):45-48. [2] 郑静,杜秀华,史新祁.大型钢铁企业电力负荷短期预测的研究[D].电力需求侧管理,2004,6(1):18-21. Zheng Jing,Du Xiuhua,Shi Xinqi.Research on short term load forecasting in steel enterprise[J].Power Demand Side Management,2004,6(1):18-21. [3] 许甜田.大用户负荷预测方法研究及其应用[D].长沙:湖南大学,2013. [4] 康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,17(17):1-9. Kong Chongqing,Xia Qing,Zhang Boming.Review of power system load forecasting and its development[J].Automation of Electric Power Systems,2004,17(17):1-9. [5] Tsekouras G J,Kotoulas P B,Tsirekis C D,et al.A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers[J].Electric Power Systems Research,2008,78(9):1494-1510. [6] 蔡剑彪,罗滇生,周小宝,等.大用户负荷预测管理系统[J].电力需求侧管理,2012,14(4):7-10,24. Cai Jianbiao,Luo Diansheng,Zhou Xiaobao,et al.Load forecasting management system about large consumer[J].Power Demand Side Management,2012,14(4):7-10,24. [7] 黄宇腾,侯芳,周勤,等.一种面向需求侧管理的用户负荷形态组合分析方法[J].电力系统保护与控制,2013(13):20-25. Huang Yuteng,Hou Fang,Zhou Qin,et al.A new combinational electrical load analysis method for demand side management[J].Power System Protection and Control,2013(13):20-25. [8] 程瑜,安甦.主动负荷互动响应行为分析[J].电力系统自动化,2013,37(20):63-70. Cheng Yu,An Su.Analysis of active load’s interaction response behavior[J].Automation of Electric Power Systems,2013,37(20):63-70. [9] 肖白,徐潇,穆钢,等.空间负荷预测中确定元胞负荷最大值的概率谱方法[J].电力系统自动化,2014(21):47-52. Xiao Bai,Xu Xiao,Mu Gang,et al.A possibility spectrum method for ascertaining maximal value of cellular load in spatial load forecasting[J].Automation of Electric Power Systems,2014(21):47-52. [10]Duan Pan,Xie Kaigui,Guo Tingting,et al.Short-term load forecasting for electric power systems using the PSO-SVR and FCM clustering techniques[J].Energies,2011,4(1):173-184. [11]周湶,邓景云,任海军,等.基于蚁群算法的配电网空间负荷预测方法研究[J].电力系统保护与控制,2010,38(24):99-104. Zhou Quan,Deng Jingyun,Ren Haijun,et al.Research on spatial load forecast of distribution networks based on ant colony algorithm[J].Power System Protection and Control,2010,38(24):99-104. [12]Thordarson F O,Madsen H,Nielsen H A,et al.Conditional weighted combination of wind power forecasts[J].Wind Energy,2010,13(8):751-763. [13]Germi,M B,Mirjavadi M, Namin A S S,et al.A hybrid model for daily peak load power forecasting based on SAMBA and neural network[J].Journal of Intelligent & Fuzzy Systems,2014,27(2):913-920. [14]牛东晓,魏亚楠.基于FHNN相似日聚类自适应权重的短期电力负荷组合预测[J].电力系统自动化,2013,37(3):54-57. Niu Dongxiao,Wei Yanan.Short-term power load combinatorial forecast adaptive weighted by FHNN similar-day clustering[J].Automation of Electric Power Systems,2013,37(3):54-57. [15]Taylor J W.Short-term load forecasting with exponentially weighted methods[J].IEEE Transactions on Power Systems,2012,27(1):458-464. [16]Borges C E,Penya Y K,Fernandez I.Evaluating combined load forecasting in large power systems and smart grids[J].IEEE Transactions on Industrial Informatics,2013,9(3):1570-1577. [17]Yao Lan,Jiang Yulian,Xiao Jian.Short-term power load forecasting by interval type-2 fuzzy logic system[J].Information Computing and Applications,2011,244:575-582. [18]Khosravi A,Nahavandi S,Creighton D.et al.Interval type-2 fuzzy logic systems for load forecasting:a comparative study[J].IEEE Transactions on Power Systems,2012,27(3):1274-1282. [19]Quan H,Srinivasan D,Khosravi A.Short-term load and wind power forecasting using neural network-based prediction intervals[J].IEEE Transactions on Neural Networks and Learning Systems,2014,25(2):303-315. [20]罗滇生,姚建刚,何洪英,等.基于自适应滚动优化的电力负荷多模型组合预测系统的研究与开发[J].中国电机工程学报,2003,23(5):58-61. Luo Diansheng,Yao Jiangang,He Hongying,et al.Research and development of multi-model combining load forecasting system based on self-adaptive rolling optimization[J].Proceedings of the CSEE,2003,23(5):58-61. [21]谢开贵,李春燕,周家启,等.基于神经网络的负荷组合预测模型研究[J].中国电机工程学报,2002,22(7):85-89. Xie Kaigui,Li Chunyan,Zhou Jiaqi,et al.Research of the combination forecasting model for load based on artificial neural network[J].Proceedings of the CSEE,2002,22(7):85-89. [22]Chicco G,Akilimali J S.Renyi entropy based classification of daily electrical load patterns[J].IET Generation,Transmission & Distribution,2010,4(6):736-745. [23]Chicco G,Ionel O M,Porumb R.Electrical load pattern grouping based on centroid model with ant colony clustering[J].IEEE Transactions on Power Systems,2013,28(2):1706-1715.