Multiobjective Optimal Generation Dispatch Using Equilibria-Based Multi-Group Synergistic Searching Algorithm
Zhou Bin1, Song Yan1, Li Jinming2, Yu Tao3, Wei Hua4
1. Hunan University Changsha 410082 China; 2. State Grid Hunan Electric Company Economic and Technical Institute Changsha 410004 China; 3. South China University of Technology Guangzhou 510640 China; 4. Guangxi University Nanning 530004 China
Abstract:This paper presents a novel equilibria-based multiple group synergistic searching (EMGSS) algorithm to cope with the highly constrained multi-objective generation dispatch (MOGD) with multiple contradictory objectives. As for the proposed algorithm, a synergistic evolutionary searching mechanism based on stochastic machine learning is developed to achieve the fitness assignment and strategic interaction among cooperative multi-groups. Furthermore, a novel equilibria-based hierarchical clustering is proposed to provide power dispatchers with a set of diversified optimum equilibria Pareto frontier (PF), and Nash equilibrium is used to extract the best decision solution from the resulting PF. The proposed EMGSS has been applied and tested over the IEEE 30-bus system and IEEE 118-bus system. Case studies have verified and confirmed the superiority of the algorithm to solve the multiobjective optimization problems with high-dimensional and large-scale objective functions.
[1] 郑晓, 张静, 马韬韬, 等. 基于改进决策方法的电力系统多目标优化调度[J]. 电工技术学报, 2010, 25(9): 151-156. Zheng Xiao, Zhang Jing, Ma Taotao, et al. Power system multi-objective optimization dispatch based on an improved decision-making method[J]. Transactions of China Electrotechnical Society, 2010, 25(9): 151- 156. [2] Das D B, Patvardhan C. New multi-objective stochastic search technique for economic load dispatch[J]. IEE Proceedings Generation, Transmission & Distribution, 1998, 145(6): 747-752. [3] Abido M A. Multiobjective evolutionary algorithms for electric power dispatch problem[J]. IEEE Transac- tions on Evolutionary Computation, 2006, 10(3): 315-329. [4] 郑金华. 多目标进化算法及其应用[M]. 北京: 科学出版社, 2007. [5] Abido M A. Environmental/economic power dispatch using multi-objective evolutionary algorithms[J]. IEEE Transactions on Power Systems, 2003, 18(4): 1529- 1537. [6] Agrawal S, Panigrahi B K, Tiwari M K. Multiob- jective particle swarm algorithm with fuzzy clustering for electrical power dispatch[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(5): 529-541. [7] 彭春华, 孙惠娟. 基于非劣排序微分进化的多目标优化发电调度[J]. 中国电机工程学报, 2009, 29(34): 71-76. Peng Chunhua, Sun Huijuan. Multi-objective optimiza- tion power dispatch based on non-dominated sorting differential evolution[J]. Proceedings of the CSEE, 2009, 29(34): 71-76. [8] He S, Wu Q H, Saunders J R. Group search optimizer: an optimization algorithm inspired by animal searching behavior[J]. IEEE Transactions on Evolutionary Com- putation, 2009, 13(5): 973-990. [9] Zhou B, Chan K W, Yu T, et al. Equilibrium-inspired multiple group search optimization with synergistic learning for multiobjective electric power dispatch[J]. IEEE Transactions on Power Systems, 2013, 28(4): 3534-3545. [10] Poznyak A S, Najim K. Learning automata and stochastic optimization[M]. New York: Springer- Verlag, 1997. [11] 余涛, 周斌, 陈家荣. 基于多步回溯 Q ( λ )学习的互联电网随机最优CPS控制[J]. 电工技术学报, 2011, 26(6): 179-186. Yu Tao, Zhou Bin, Chen Jiarong. Stochastic optimal CPS control for interconnected power grids using multi-step backtrack Q ( λ ) learning[J]. Transactions of China Electrotechnical Society, 2011, 26(6): 179-186. [12] Park J, Lee K, Shin J, et al. A particle swarm optimization for economic dispatch with nonsmooth cost functions[J]. IEEE Transactions on Power Systems, 2005, 20(1): 34-42. [13] Caponetto R, Fortuna L, Fazzino S, et al. Chaotic sequences to improve the performance of evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(3): 289-304. [14] 谢政. 对策论导论[M]. 北京: 科学出版社, 2010. [15] Lee F N, Breipohl A M. Reserve constrained economic dispatch with prohibited operating zones[J]. IEEE Transactions on Power Systems, 1993, 8(1): 246-254. [16] 张汝波. 强化学习理论及应用[M]. 哈尔滨: 哈尔滨工程大学出版社, 2001. [17] Nocedal J, Wright S J. Numerical Optimization[M]. New York: Springer, 2006. [18] Zimmerman R, Gan D. Matpower: a MATLAB power system simulation package[OL]. Available: http:// www.pserc.cornell.edu/matpower.