Abstract:A novel single phase voltage mode quasi-Z-source inverter circuit topology and control strategy were proposed. The circuit topology, single polarity SPWM control strategy with energy storage capacitor voltage feed forward control of impedance network and feedback control of output voltage, characteristic of steady principle of this inverter were deeply investigated, and the important conclusions and the design criteria of key circuit parameters of this inverter were obtained in the paper. This kind of inverter is cascade composed of impedance network with high voltage transmission ratio, single phase inverting bridge and single phase filter. The impedance network with high voltage transmission ratio is composed of energy storage inductance L0 and two DLCC type with two ports impedance network units connected in cascade. The theoretical analysis and the experimental results have demonstrated that this kind of inverter has the advantages of simple topologies, high voltage transmission ratio, high power density, low output voltage distortion, high reliability, flexible input voltage, low cost, wide application prospect and so on.
[1] 陈国呈. PWM逆变技术及应用[M]. 北京: 中国电力出版社, 2007. [2] Chen Daolian, Wang Guoling. Differential buck DC- DC chopper mode inverters with high-frequency link[J]. IEEE Transactions on Power Electronics, 2011, 26(5): 1444-1451. [3] 陈道炼, 王国玲, 段燕斌. 差动正激直流变换器型高频环节逆变器[J]. 中国电机工程学报, 2010, 30(9): 20-26. Chen Daolian, Wang Guoling, Duan Yanbin. Differen- tial forward DC-DC converter mode inverter with high frequency link[J]. Proceeding of the CSEE, 2010, 30(9): 20-26. [4] 杨金波, 杨贵杰, 李铁才. 六相电压源逆变器PWM算法[J]. 电工技术学报, 2012, 27(7): 205-211. Yang Jinbo, Yang Guijie, Li Tiecai. PWM techniques for six-phase voltage-source inverters[J]. Transactions of China Electrotechnical Society, 2012, 27(7): 205-211. [5] 陈道炼, 陈艳慧, 李睿圆. 差动Boost直流变换器型高频环节逆变器[J]. 中国电机工程学报, 2010, 30(3): 8-13. Chen Daolian, Chen Yanhui, Li Ruiyuan. Differential boost DC-DC converter mode inverters with high frequency link[J]. Proceeding of the CSEE, 2010, 30(3): 8-13. [6] Peng F Z. Z-source inverter[J]. IEEE Transactions on Industry Applications, 2003, 39(2): 504-510. [7] Kun Y, Fanglin L, Miao Z. Implementation of maximum constant boost control of Z-source inverters based on space vector modulation technique[C]. IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 2012: 1500-1505. [8] 刘鸿鹏, 王卫, 吴辉, 等. 基于Z源电容电压变化的并网电流控制策略[J]. 电工技术学报, 2011, 26(7): 97-103. Liu Hongpeng, Wang Wei, Wu Hui, et al. Grid current control strategy based on Z-source capacitor voltage change[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 97-103. [9] 张瑾, 齐铂金, 张少如. Z源三电平中点钳位逆变器的空间矢量调制方法[J]. 电工技术学报, 2010, 25(9): 108-114. Zhang Jin, Qi Bojin, Zhang Shaoru. A space vector PWM algorithm for Z-source three-level NPC inverters [J]. Transactions of China Electrotechnical Society, 2010, 25(9): 108-114. [10] Anderson J, Peng F Z. Four quasi-Z-source inverters [C]. Proceedings of Power Electronics Specialists Conference(PESC), Rhodes, 2008: 2743-2749. [11] Nguyen M K, Lim Y C, Cho G B. Switched-inductor quasi-Z source inverter[J]. IEEE Transactions on Power Electronics, 2011, 26(11): 3183- 3191. [12] 李媛, 彭方正. Z源/准Z源逆变器在光伏并网系统中的电容电压恒压控制策略[J]. 电工技术学报, 2011, 26(5): 62-69. Li Yuan, Peng Fangzheng. Constant capacitor control strategy for Z-source/quasi-Z-source inverter in grid- connected photovoltaic systems[J]. Transactions of China Electrotechnical Society, 2011, 26(5): 62-69. [13] 薛必翠, 丁新平, 张承慧, 等. 准Z源逆变器交流调速系统及部分PAM/PWM控制策略[J]. 电工技术学报, 2012, 27(10): 142-149. Xue Bicui, Ding Xinping, Zhang Chenghui, et al. Quasi-Z-source inverter adjustable speed drives system and its partly PAM/PWM control strategy[J]. Transac- tions of China Electrotechnical Society, 2012, 27(10): 142-149. [14] Mazumder S K, Burra R K, Rongjun H, et al. A universal gridconnected fuel-cell inverter for residential application[J]. IEEE Transactions on Industrial Elec- tronics, 2010, 57(10): 3431-3447. [15] Jang M, Ciobotaru M, Agelidis V G. A single- phase grid-connected fuel cell system based on a boost inverter[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 279-288.