Analysis and Verification of Energy Flow Model of Magnetic Resonant Coupled Wireless Power Transfer System
Zhu Jiahui1, Liu Zhifang1, Gao Qiang2, Liu Qi2, Pan Jiayu3
1. China Electric Power Research Institute Beijing 100192 China; 2. Electric Power Research Institute of State Grid Liaoning Electric Power Co. Ltd Shenyang 110006 China; 3. Liaoning Dongke Power Co. Ltd Shenyang 110179 China
Abstract:Circuit theory or coupled-mode theory is generally used for analyzing the principle of magnetic coupled resonant wireless power transfer (WPT). However, both methods cannot describe the time-domain energy state of the system and components. Therefore, an energy flow model applying circuit theory and coupled-mode theory is proposed in this paper. Firstly, a basic energy flow model of WPT is set up based on SS type compensation structure. Then it is simulated and verified by comparing with the circuit model and coupled mode model using Matlab and ADS software. Finally, the prototype is built. The experimental results are consistent with the theoretical results, which verified the correctness of the model. Moreover, the results show that the energy flow model can describe the working mechanism of the WPT system more clearly, which provides a more comprehensive and intuitive theoretical basis for the optimal design of the WPT system.
诸嘉慧, 刘之方, 高强, 刘齐, 潘加玉. 基于能量流理论的谐振式无线电能传输原理分析与验证[J]. 电工技术学报, 2019, 34(20): 4188-4195.
Zhu Jiahui, Liu Zhifang, Gao Qiang, Liu Qi, Pan Jiayu. Analysis and Verification of Energy Flow Model of Magnetic Resonant Coupled Wireless Power Transfer System. Transactions of China Electrotechnical Society, 2019, 34(20): 4188-4195.
[1] 杨庆新, 章鹏程, 祝丽花, 等. 无线电能传输技术的关键基础与技术瓶颈问题[J]. 电工技术学报, 2015, 30(5): 1-8. Yang Qingxin, Zhang Pengcheng, Zhu Lihua, et al.Key fundamental problems and technical bottlenecks of the wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 1-8. [2] Tesla N. Apparatus for transmitting electrical energy: US, 1/119,732[P].1914-12-1. [3] 程时杰, 陈小良, 王军华, 等. 无线输电关键技术及其应用[J]. 电工技术学报, 2015, 30(19): 68-84. Cheng Shijie, Chen Xiaoliang, Wang Junhua, et al.Key technologies and applications of wireless power transmission[J]. Transactions of China Electro- technical Society, 2015, 30(19): 68-84. [4] 李琳, 李然. 双频段磁耦合谐振式无线电能传输系统特性分析及实验验证[J]. 电工技术学报, 2017, 32(18): 90-97. Li Lin, Li Ran.Analysis and experimental verification of dual-band wireless power transfer system via magnetic resonant coupling[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 90-97. [5] Mohamed A A S, Marim A A, Mohammed O A. Magnetic design considerations of bidirectional inductive wireless power transfer system for EV applications[J]. IEEE Transactions on Magnetics, 2017, 53: 1-5. [6] Alberto J, Reggiani U, Sandrolini L.Magnetic near field from an inductive power transfer system using an array of coupled resonators[C]//7th Asia Pacific International Symposium on Electromagnetic Com- patibility, Shenzhen, China, 2016: 876-879. [7] 田子建, 林越, 杨洪文, 等. 具有中继谐振线圈的磁耦合谐振无线电能传输系统[J]. 电工技术学报, 2015, 30(19): 168-174. Tian Zijian, Lin Yue, Yang Hongwen, et al.Magnetic coupling resonance wireless power transmission system with intermediate resonant coil[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(19): 168-174. [8] Shoki H.Issues and initiatives for practical deployment of wireless power transfer technologies in japan[J]. Proceedings of the IEEE, 2013, 101(6): 1312-1320. [9] Dai J, Ludois D C.A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6017-6029. [10] 张波, 疏许健, 黄润鸿. 感应和谐振无线电能传输技术的发展[J]. 电工技术学报, 2017, 32(18): 3-17. Zhang Bo, Shu Xujian, Huang Runhong.The development of inductive and resonant wireless power transfer technology[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 3-17. [11] Yu Xiaofang, Sandhu S, Beiker S, et al.Wireless energy transfer with the presence of metallic planes[J]. Applied Physics Letters, 2011, 99(21): 1-3. [12] 李阳, 张雅希, 杨庆新, 等. 磁耦合谐振式无线电能传输系统最大功率效率点分析与实验验证[J]. 电工技术学报, 2016, 31(2): 18-24. Li Yang, Zhang Yaxi, Yang Qingxin, et al.Analysis and experimental validation on maximum power and efficiency in wireless power transfer system via coupled magnet resonances[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 18-24. [13] 李艳红, 刘国强, 宋显锦, 等. 宽频磁耦合谐振式无线电能传输系统特性分析[J]. 电工技术学报, 2015, 30(19): 7-11. Li Yanhong, Liu Guoqiang, Song Xianjin, et al.The study on the characteristics of broadband magnetic coupling resonant wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2015, 30(19): 7-11. [14] Jiang Hao, Zhang Junmin, Lan Di, et al.A low- frequency versatile wireless power transfer technology for biomedical implants[J]. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7(4): 526-535. [15] Jabbar H, Song Y S, Jeong T T.RF energy harvesting system and circuits for charging of mobile devices[J]. IEEE Transactions on Consumer Electronics, 2010, 56(1): 247-253. [16] Choi S Y, Gu B W, Jeong S Y, et al.Advances in wireless power transfer systems for roadway-powered electric vehicles[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 18-36. [17] Jang Y J, Suh E S, Kim J W.System architecture and mathematical models of electric transit bus system utilizing wireless power transfer technology[J]. IEEE Systems Journal, 2016, 10(2): 495-506. [18] Sallan J, Villa J L, Llombart A, et al.Optimal design of ICPT systems applied to electric vehicle battery charge[J]. IEEE Transactions on Industrial Elec- tronics, 2009, 56(6): 2140-2149. [19] 疏许健, 张波. 感应耦合无线电能传输系统的能量法模型及特性分析[J]. 电力系统自动化, 2017, 41(2): 28-32. Shu Xujian, Zhang Bo.Energy model and characteristic analysis for inductively coupled power transfer system[J]. Journal of Modern Power Systems and Automation, 2017, 41(2): 28-32. [20] Villa J L, Sallan J, Sanz Osorio J F, et al. High- misalignment tolerant compensation topology for ICPT systems[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 945-951.