| [1] 王佳仁,谢宁,王承民,等.提升现代配电系统效率和效益的研究与实践[J].电网技术,2018,42(11):3543-3549.
Wang Jiaren,Xie Ning,Wang Chengmin, et al.Research and Practice of Enhancing Efficiency and Benefit of Modern Distribution System[J]. Power System modern Technology,2018, 42(11): 3543-3548.
[2] 王守相,张丙杰,赵倩宇,等.基于集成树和MoE的馈线统计线损率双层估计模型[J].电工技术学报,2024,39(03):774-784.
Wang Shouxiang, Zhang Bingjie, Zhao Qianyu, et al.Double-Layers Stacking Estimation Model for Feeder Statistical Line Loss Rate Based on Tree-Based Ensemble Learning and MoE[J]. Transactions of China Electrotechnical Society, 2024,39(03):774-784.
[3] 黄南天,程铎,蔡国伟.基于改进时空图神经网络的高渗透率有源配电网故障定位[J].电力系统自动化,2025,49(10):112-122.
Huang Nantian, Cheng Duo, Cai Guowei.Fault Location for Active Distribution Network with High Penetration Rate Based on Improved Spatio-Temporal Graph Neural Network[J]. Automation of Electric Power Systems,2025,49(10):112-122.
[4] 吴涵, 袁越, 侯语涵, 等. 配电网理论线损概率分布函数的计算与分析[J].中国电机工程学报,2024, 44(16):6444-6455.
Wu Han, Yuan Yue, Hou Yuhan, et al.Computation and Analysis of Theoretic Line Loss Probability Distribution Function of Distribution Network. Proceedings of the CSEE, 2024, 44(16): 6444-6455.
[5] 陈启鑫,郑可迪,康重庆,等.异常用电的检测方法:评述与展望[J].电力系统自动化,2018,42(17):189-199.
Chen Qixi, Zheng Kedi, Kang Chongqing, et al.Detection Methods of Abnormal Electricity Consumption Behaviors: Review and Prospect[J]. Automation of Electric Power Systems,2018,42(17):189-199.
[6] 唐冬来,刘友波,熊智临,等.基于时空关联矩阵的配电台区反窃电预警方法[J].电力系统自动化,2020,44(19):168-176.
Tang Donglai, Liu Youbo, Xiong Zhilin, et al.Early warning method of electricity anti-theft in distribution station area based on spatiotemporal correlation matrix[J]. Automation of Electric Power Systems, 2020, 44(19): 168-176
[7] 林振智,崔雪原,金伟超,等.用户侧窃电检测关键技术[J].电力系统自动化,2022,46(05):188-199.
Lin Zhenzhi, Cui Xueyuan, Jin Weichao, et al.Key Technologies of Electricity Theft Detection at Consumer Side[J]. Automation of Electric Power Systems,2022, 46(5): 188-199.
[8] 金晟,苏盛,薛阳,等.数据驱动窃电检测方法综述与低误报率研究展望[J].电力系统自动化,2022,46(1):3-14.
Jin Sheng, Su Sheng, Xue Yang, et al.Review on Data-driven Based Electricity Theft Detection Method and Research Prospect for Low False Positive Rate[J]. Automation of Electric Power Systems,2022, 46(1):3-14.
[9] GLAUNER P, MEIRA J A, VALTCHEV P, et al.The challenge of non-technical loss detection using artificial intelligence:a survey[J]. International Journal of Computational Intelligence Systems,2016,10(1):760-775.
[10] Amin S,Schwartz A G,Cardenas A A, et al.Game-Theoretic Models of Electricity Theft Detection in Smart Utility Networks: Providing New Capabilities with Advanced Metering Infrastructure[J]. IEEE Control Systems Magazine,2015,35(1):66-81.
[11] Livia R, Fernanda T, Vinicius C D C, et al. Non-Technical Loss Identification by Using Data Analytics and Customer Smart Meters[J]. IEEE Transactions on Power Delivery,2020,1-1.
[12] 王昕,田猛,赵艳峰,等.一种基于状态估计的新型窃电方法及对策研究[J].电力系统保护与控制,2016,44(23):141-146.
Wang Xin, Tian Meng, Zhao Yanfeng, et al.A new kind of electricity theft based on state estimation and countermeasure[J]. Power System Protection and Control, 2016,44(23):141-146.
[13] Zibin Z, Yatao Y, Xiangdong N, et al.Wide and Deep Convolutional Neural Networks for Electricity-Theft Detection to Secure Smart Grids[J]. IEEE Transactions on Industrial Informatics,2018,14(4):1606-1615.
[14] P. P B, Hongyun C, Bin Z, et al. Electricity Theft Pinpointing through Correlation Analysis of Master and Individual Meter Readings[J]. IEEE Transactions on Smart Grid, 2019, 11(4):1-1.
[15] 李秋红. 基于改进粒子群算法的前馈神经网络识别用户窃电行为[J].电气技术,2022,23(11):44-48.
Li Qiuhong.Feedforward neural network based on improved particle swarm optimization algorithm for identification of user electricity stealing behavior[J]. Electrical Engineering,2022,23(11):44-48.
[16] 高昂,郑建勇,梅飞,等.基于三元组孪生网络的窃电检测算法[J].中国电机工程学报,2022,42(11):3975-3986.
Gao Ang, Zheng Jianyong, Mei Fei, et al.Electricity theft detection algorithm based on triplet network[J]. Proceedings of the CSEE,2022,42(11): 3975-3986.
[17] 王炜韬, 赵健, 王小宇. 基于对冲对抗机制与图注意力网络的异常用电检测[J]. 电力系统自动化,2022,46(22):120-128.
Wang Weitao, Zhao Jian, Wang Xiaoyu.Abnormal Power Consumption Detection Based on Hedge-Antagonism Mechanism and Graph Attention Network[J]. Automation of Electric Power Systems, 2022, 46(22): 120-128.
[18] 金涛,王万豪,黄钦瑜,等.一种利用轻量级多通道注意力融合网络的窃电检测边缘计算方法[J/OL].中国电机工程学报,1-13[2025-04-29].
Jin Tao, Wang Wanhao, Huang Qinyu, et al.An Edge Computing Approach for Electricity Theft Detection Utilizing Lightweight Multi-Channel Attention Fusion Network[J/OL]. Proceedings of the CSEE,1-13[2025-04-29].
[19] 陈敏,张逸,邹阳,等.基于稳健回归和卷积神经网络的中压窃电类型检测方法[J].电网技术,2024,48(11):4729-4738.
Chen Min, Zhang Yi, Zou Yang, et al.A Medium-voltage Stealing Type Detection Method Based on Robust Regression and Convolutional Neural Network[J]. Power System Technology, 2024, 48(11): 4729-4738.
[20] 刘康,李彬,薛阳,等.基于传递熵密度聚类的用户窃电识别方法[J].中国电机工程学报,2022,42(20):7535-7546.
Liu Kang, Li Bin, Xue Yang, et al.User Electric Theft Detection Method Based on Transfer Entropy Density Clustering[J]. Proceedings of the CSEE,2022,42(20):7535-7546.
[21] 邹念,张颖,苏盛,等.基于小时尺度周期特征自编码器的用户窃电识别方法[J].电网技术,2023,47(06):2558-2567.
Zou Nian, Zhang Ying, Su Sheng, et al.User electric theft detection method based on hour scale periodic feature LSTM-Transformer[J]. Power System Technology,2023,47(6):2558-2567.
[22] W. Liao, R. Zhu, et al.Electricity Theft Detection Using Dynamic Graph Construction and Graph Attention Network[J]. IEEE Transactions on Industrial Informatics, pp. 5074-5086, 2024.
[23] 陈静,郑垂锭,李桂敏,等.考虑行业关联度的工业用户用电异常识别研究[J].仪器仪表学报,2023,44(4):72-81.
Chen Jing, Zheng Chuiding, Li Guimin, et al.Research on abnormal electricity usage identification for industrial users considering industry relevance[J]. Chinese Journal of Scientific Instrument, 2023, 44(4): 72-81.
[24] 李青,张新燕,摆志俊,等.基于MQ-WaveNet的风电集群发电功率多步概率预测[J].电力系统自动化,2023,47(08):156-168.
Li Qing, Zhang Xinyan, Bai Zhijun, et al.Multi-step Probability Prediction of Power Generation for Wind Power Clusters Based on Multi-horizon Quantile-WaveNet[J]. Automation of Electric Power Systems,2023,47(08):156-168.
[25] 胡博,张鹏飞,黄恩泽,等.基于图WaveNet的电动汽车充电负荷预测[J].电力系统自动化,2022,46(16):207-213.
Hu BO, Zhang Pengfei, Huang Enze, et al.Graph WaveNet Based Charging Load Forecasting of Electric Vehicle[J]. Automation of Electric Power Systems,2022,46(16):207-213.
[26] 涂潮,刘万军,赵琳琳,等.有限训练样本下的多尺度空洞密集网络高光谱影像分类[J].仪器仪表学报,2024,45(04):206-216.
Tu Chao, Liu Wanjun, Zhao Linlin, et al.Multiscale dilated dense network for hyperspectral image classification with limited training samples[J]. Chinese Journal of Scientific Instrument,2024,45(04):206-216.
[27] 陈晓龙,孙丽蓉,李永丽,等.基于图注意力网络和一致性风险控制的配电网故障区段定位方法[J].电网技术,2023,47(12):4866-4877.
Chen Xiaolong, Sun Lirong, Li Yongli, et al.A Fault Section Location Method Based on Graph Attention Network and Conformal Risk Control in Distribution Network[J]. Power System Technology,2023,47(12):4866-4877.
[28] 郭美仑,寇鹏,田润泽,等.基于贝叶斯图卷积神经网络的风场内多风机风速概率预测[J/OL].电工技术学报,1-16[2025-07-14].
Guo Meilun, Kou Peng, Tian Runze, et al.Speed Probabilistic Forecasting of Multiple Wind Turbines in a Wind Farm Based on Bayesian Graph Convolutional Neural Network[J/OL]. Transactions of China Electrotechnical Society,1-16[2025-07-14].
[29] 李云松,张智晟.考虑综合需求响应的Transformer-图神经网络综合能源系统多元负荷短期预测[J].电工技术学报,2024,39(19):6119-6128.
Li Yunsong, Zhang Zhisheng.Transformer Based Multi Load Short-Term Forecasting of Integrated Energy System Considering Integrated Demand Response[J]. Transactions of China Electrotechnical Society,2024,39(19):6119-6128.
[30] 张翼,刘富州,朱永利,等.广域行波信息与图注意力网络相结合的输电网故障定位[J].仪器仪表学报,2022,43(06):140-150.
Zhang Yi, Liu Fuzhou, Zhu Yongli, et al.Fault location of transmission network combining Wide-area traveling wave information and graph attention network[J]. Chinese Journal of Scientific Instrument,2022,43(06):140-150.
[31] 郑毅,王承民,刘保良,等.基于多层级时空图神经网络的风电机组在线异常检测[J].电力系统自动化,2024,48(05):107-119.
Zheng Yi, Wang Chengmin, Liu Baoliang, et al.Online Anomaly Detection of Wind Turbines Based on Hierarchical Spatio-temporal Graph Neural Network[J]. Automation of Electric Power Systems,2024,48(05):107-119.
[32] 李佳玮,王小君,和敬涵,等.基于图注意力网络的配电网故障定位方法[J].电网技术,2021,45(06):2113-2121.
Li Jiawei, Wang Xiaojun, He Jinghan, et al.Distribution Network Fault Location Based on Graph Attention Network[J]. Power System Technology,2021,45(06):2113-2121.
[33] 张涛,程毅飞,孙欣煦.基于因果推断的图注意力网络[J].计算机科学,2023,50(S1):157-165.
Zhang Tao, Cheng Yifei, Sun Xinxu.Graph Attention Networks Based on Causal Inference[J]. Computer Science,2023,50(S1):157-165.
[34] 彭昱,符琛,郭昕,等.基于FCM-BOA-TCN-GRU的分布式光伏出力异常检测方法[J].电工技术学报,2025,40(17):5389-5401.
Peng Yu, Fu Chen, Guo Xin, et al.Distributed Photovoltaic Power Output Anomaly Detection Method Based on FCM-BOA-TCN-GRU[J]. Transactions of China Electrotechnical Society, 2025,40(17):5389-5401.
[35] 葛磊蛟,李京京.面向先进计量基础设施的人工智能驱动窃电检测方法综述[J/OL].中国电机工程学报,1-23[2025-09-01].
Ge Leijiao, Li Jingjing.A Review of Artificial Intelligence-Driven Electricity Theft Detection Methods under Advanced Metering Infrastructure[J/OL]. Proceedings of the CSEE,1-23[2025-09-01].
[36] 杨天鹏,龙葵,李秋惠,等.基于时域信号超分辨率的串联电弧检测方法[J/OL].电工技术学报,1-15[2025-10-18].
Yang Tianpeng, Long Kui, Li Qiuhui, et al.Series Arc Fault Detection Method Based on Time-Domain Signal Super-Resolution[J/OL]. Transactions of China Electrotechnical Society, 1-15[2025-10-18]. |