电工技术学报  2024, Vol. 39 Issue (20): 6305-6315    DOI: 10.19595/j.cnki.1000-6753.tces.231481
电机及其系统 |
高速永磁电机新型磁性复合材料弹性模量预测
王天煜1, 杨璐铭2, 白斌2, 宇秋红3, 张岳4
1.上海电子信息职业技术学院机械与能源工程学院 上海 201411;
2.沈阳工程学院机械学院 沈阳 110136;
3.沈阳玉衡科技有限公司 沈阳 110122;
4.山东大学电气工程学院 济南 250100
Elastic Modulus Prediction of Novel Magnetic Composites for High-Speed Permanent Magnet Motors
Wang Tianyu1, Yang Luming2, Bai Bin2, Yu Qiuhong3, Zhang Yue4
1. School of Mechanical and Energy Engineering Shanghai Technical Institute of Electronics & Information Shanghai 201411 China;
2. School of Mechanical Engineering Shenyang Institute of Technology Shenyang 110136 China;
3. Shenyang Yuheng Technology Co. Ltd Shenyang 110122 China;
4. School of Electrical Engineering Shandong University Jinan 250100 China
全文: PDF (15537 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 一种新型粉块层级转子结构可有效提高高速永磁电机转子强度。为了准确分析新型复合转子结构强度,需要准确预测转子复合磁性材料的力学性能。该文将新型磁粉胶膜复合材料看作由磁粉颗粒、界面和基体组成的三相复合材料,首先基于蒙特卡罗法构建了Abaqus-Python耦合的代表性体积单元参数化模型,然后依据细观力学等效三相球模型推导出界面层的弹性模量,最后基于虚功原理创建磁粉胶膜弹性模量有限元预测模型,并与拉伸试验结果进行比较分析,验证了模型的准确性。在此基础上,研究了细观结构和界面参数对磁粉胶膜弹性模量的影响规律,得到了磁性材料细观结构与力学性能的映射关系。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王天煜
杨璐铭
白斌
宇秋红
张岳
关键词 高速电机复合转子磁性复合材料弹性模量数值仿真    
Abstract:The tensile strength of the conventional surface mount HSPMM (High-speed permanent magnet motor) rotor's permanent magnet is significantly low, posing a bottleneck for developing HSPMM. A novel composite rotor structure incorporating a powder block layer can effectively enhance the rotor strength of HSPMMs. The mechanical properties of these new composite magnetic materials play a crucial role in ensuring the structural strength and performance of magnetic components. Unlike traditional HSPMM rotors, the composite rotor structure consists of multiple layers of composite magnetic materials, necessitating a different approach to accurately analyze its mechanical strength. This paper employs micromechanics and finite element method techniques to predict the elastic modulus of magnetic composites based on an equivalent three-phase spherical model. Furthermore, the influence of microstructure, interface parameters, and magnetic powder grade on the elastic modulus of the magnetic powder film (MPF) is studied, and a mapping relationship between microstructure and mechanical properties is established.
Firstly, a representative volume element (RVE) calculation model is constructed for the MPF to capture its real microstructure. From a microscopic perspective, MPF is regarded as a three-phase composite material comprising magnetic particles, interface layers, and resin matrix. The Monte-Carlo method and Python language are utilized to develop the Abaqus software kernel for automating random particle generation, Boolean cutting and merging operations, and grid division. By adjusting parameters such as particle size, gradation, group distribution ratio, and interface layer thickness, mesoscale models representing different magnetic powder components are generated to establish the mapping relationship between mesoscopic structure and material properties. Secondly, the parameters of the interface in the RVE model are determined using elastic mechanics theory and Eshelby equivalent theory based on critical magnetic particle content. Crucial information, such as the interface layer's thickness, volume fraction, and elastic modulus, can be obtained. The proposed method ensures a uniform distribution of spherical particles at all levels. Finally, based on the virtual work principle, a finite element prediction model for the elastic modulus of the magnetic powder film is established. The predicted results can be effectively utilized in the structural design and analysis of magnetic composite materials, allowing rapid prediction of mechanical properties without complex, time-consuming testing procedures.
Based on the finite element model of micromechanics, the mechanical properties of magnetic materials are simulated and analyzed. The effects of magnetic particle gradation, interface layer parameters, and interface elastic modulus on the elastic modulus of magnetic materials are studied. The following conclusions can be drawn from the simulation analysis. (1) Magnetic particle gradation, interfacial layer parameters, and interfacial elastic modulus significantly influence the elastic modulus of MPF. Adjusting these microstructure parameters using a predictive model make it possible to enhance the material's mechanical properties. (2) Optimizing the gradation of magnetic powder using the proposed prediction model can improve the MPF elastic modulus when keeping the integral number of magnetic powder constant. (3) Accurate calculation of interface layer parameters can effectively enhance the accuracy of the prediction model.
Key wordsHigh-speed motor    composite rotor    composite magnetic materials    elastic modulus    numerical simulation   
收稿日期: 2023-09-08     
PACS: TM355  
基金资助:国家自然科学基金项目(52077121)、辽宁省科技计划联合基金项目(2023-MSLH-215)和辽宁省教育厅基本科研项目(JYTMS20230297)资助
通讯作者: 白 斌 男,1979年生,副教授,硕士生导师,研究方向机械强度、多学科优化设计等。E-mail: kpbw@163.com   
作者简介: 王天煜 女,1968年生,教授,硕士生导师,研究方向为机械强度、转子动力学及多物理场耦合分析等。E-mail: 491129306@qq.com
引用本文:   
王天煜, 杨璐铭, 白斌, 宇秋红, 张岳. 高速永磁电机新型磁性复合材料弹性模量预测[J]. 电工技术学报, 2024, 39(20): 6305-6315. Wang Tianyu, Yang Luming, Bai Bin, Yu Qiuhong, Zhang Yue. Elastic Modulus Prediction of Novel Magnetic Composites for High-Speed Permanent Magnet Motors. Transactions of China Electrotechnical Society, 2024, 39(20): 6305-6315.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.231481          https://dgjsxb.ces-transaction.com/CN/Y2024/V39/I20/6305