Theoretical Analysis and Experimental Verification on Mathematical and Physical Model of Gas-Liquid-Solid Insulation System
Liu Zhi1,2, Ruan Lin1
1. Insititute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. School of Electronic and Telecommunications Engineering University of Chinese Academy of Sciences Beijing 100049 China
Abstract:Gas-liquid-solid insulation system in stator slot consists of thinned mica insulation, two-phase evaporative cooling medium and wrapping material used to fix stator bar. A simplified physical model of gas-liquid-solid insulation system based on the structural features was established in this paper. On the basis of the physical model, mathematical model of each insulation parameter in the new insulation system was put forward concretely. Furthermore, insulation thickness, mainstream temperature and Jacob number of boiling evaporative cooling medium were identified as relevant influencing factors of the new insulation system. And influence of the abovementioned factors on capacitance and dielectric loss tangent of insulation system was analyzed severally. At last, the correctness of theoretical analysis on mathematical and physics model was validated by insulation test.
刘直, 阮琳. 气液固三相绝缘体系数学物理模型的理论分析与实验验证[J]. 电工技术学报, 2018, 33(9): 2097-2104.
Liu Zhi, Ruan Lin. Theoretical Analysis and Experimental Verification on Mathematical and Physical Model of Gas-Liquid-Solid Insulation System. Transactions of China Electrotechnical Society, 2018, 33(9): 2097-2104.
[1] 中国电气工程大典编委会. 中国电气工程大典第9卷: 电机工程[M]. 北京: 中国电力工业出版社, 2008. [2] 顾国彪, 阮琳, 刘斐辉, 等. 蒸发冷却技术的发展、应用和展望[J]. 电工技术学报, 2015, 30(11): 1-6. Gu Guobiao, Ruan Lin, Liu Feihui, et al.Developments, applications and prospects of evaporative cooling technology[J]. Transactions of China Electrotechnical Society, 2015, 30(11): 1-6. [3] 顾国彪, 阮琳. 蒸发冷却技术在水轮发电机领域的应用和发展[J]. 中国电机工程学报, 2014, 34(29): 5112-5119. Gu Guobiao, Ruan Lin.Applications and developments of the evaporative cooling technology in the field of hydro-generators[J]. Proceedings of the CSEE, 2014, 34(29): 5112-5119. [4] 阮琳, 陈金秀, 顾国彪. 冷却方式对抽水蓄能机组定子绝缘特性的影响[J]. 电工技术学报, 2017, 32(14): 246-251. Ruan Lin, Chen Jinxiu, Gu Guobiao.Different influence of cooling method to stator bar insulation characteristics in pumped storage units[J]. Transactions of China Electrotechnical Society, 2017, 32(14): 246-251. [5] 国建鸿, 顾国彪, 傅德平, 等. 330 MW蒸发冷却汽轮发电机冷却技术的特点及性能[J]. 电工技术学报, 2013, 28(3): 134-139. Guo Jianhong, Gu Guobiao, Fu Deping, et al.Cooling characteristics and performance of the 330 MW evaporative cooling turbo generator[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 134-139. [6] 栾茹, 顾国彪. 蒸发冷却汽轮发电机定子绝缘结构的模拟试验及分析[J]. 大电机技术, 2002(6): 23-26. Luan Ru, Gu Guobiao.Simulation experimentation and analysis of the stator insulation structure for evaporative cooling turbogenerator[J]. Large Electric Machine and Hydraulic Turbine, 2002 (6): 23-26. [7] 栾茹, 平建华, 顾国彪. 135 MW全浸式蒸发冷却电机定子的绝缘结构[J]. 高电压技术, 2009, 35(6): 1333-1337. Luan Ru, Ping Jianhua, Gu Guobiao.Stator insulation structure of 135 MW evaporative cooling turbo-generator by marinating[J]. High Voltage Engineering, 2009, 35(6): 1333-1337. [8] 李振国, 田新东, 张广强, 等. 电厂空冷风机变频器蒸发冷却技术改造[J]. 电力自动化设备, 2008, 28(10): 116-119. Li Zhenguo, Tian Xindong, Zhang Guangqiang, et al.Evaporative cooling technology applied to inverter of power plant air-cooling fan[J]. Electric Power Automation Equipment, 2008, 28(10): 116-119. [9] 黄伟, 冯维, 王海峰, 等. 直流换流阀单元模块蒸发冷却系统的仿真分析与试验[J]. 电工技术学报, 2017, 32(2): 264-270. Huang Wei, Feng Wei, Wang Haifeng, et al.Simulation and experimental study on the evaporative cooling system of HVDC valve unit[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 264-270. [10] Li Zhenguo, Fu Deping, Guo Jianhong, et al.Study on spraying evaporative cooling technology for the large electrical machine[C]//International Conference on Electrical Machines and Systems, Tokyo, Japan, 2009: 1-4. [11] 熊斌, 阮琳, 顾国彪, 等. 蒸发冷却技术在高电荷态ECR离子源磁体上的应用——LECR4[J]. 电工技术学报, 2015, 30(10): 219-225. Xiong Bin, Ruan Lin, Gu Guobiao, et al.Application of evaporative cooling technology in magnet of high charge state ECR ion source—LECR4[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 219-225. [12] 栾茹. 卧式蒸发冷却电机定子绝缘与传热系统的研究[D]. 北京: 中国科学院电工研究所, 2004. [13] 栾茹. 卧式蒸发冷却电机定子的绝缘与传热[M]. 北京: 科学出版社, 2009. [14] Liu Zhi, Ruan Lin.Analysis of gas-liquid-solid stator-insulation system in the evaporative cooling turbogenerator[C]//IEEE International Conference on Electrical Machines and Systems, Hangzhou, China, 2014: 2384-2388. [15] 梁曦东, 陈昌渔, 周远翔. 高电压工程[M]. 北京: 清华大学出版社, 2003. [16] 金维芳. 电介质物理学[M]. 北京:机械工业出版社, 1997. [17] 张丽丽, 黄心茹, 周恒为, 等. 基于Weiss分子场理论对极性液体中静态介电常数随温度变化及其相应取向关联的研究[J]. 物理学报, 2012, 61(18): 187701. Zhang Lili, Huang Xinru, Zhou Hengwei, et al.Study on the variation of static dielectric constant with temperature and the corresponding orientational correlation in polar liquids by usingWeiss’s molecular field theory[J]. Acta Physica Sinica, 2012, 61(18): 187701. [18] 刘付德, 凌志远, 熊茂仁. 固体介质中电偶极子介电常数温度特性与能级密度分布关系[J]. 物理学报, 1995(8): 1302-1309. Liu Fude, Ling Zhiyuan, Xiong Maoren.The relationship study between temperature characteristics of dipole permittivities and activation energy density distribution in solid dielectrics[J]. Acta Physica Sinica, 1995(8): 1302-1309. [19] Müller Y, Feja S, Grimm U.Electrical properties of the liquid phase of refrigerant-/oil mixtures[C]//Sae International Symposium, 2011. [20] 黄超. 高机械强度环氧多胶粉云母带的性能研究[D]. 桂林: 桂林理工大学, 2015. [21] 陈嘉宾, 蔡振业, 林纪方. 人工汽化中心表面核状沸腾传热的研究——(I)汽化中心的大小和密度对沸腾过程中汽泡脱离直径和频率的影响[J]. 化工学报, 1986, 37(3): 269-278. Chen Jiabin, Cai Zhenye, Lin Jifang.Boiling on surfaces with artificial nucleation sites (I) effect of cavity size and cavity density on bubble diameter and frequency of departure in pool boiling[J]. Journal of Chemical Industry and Engineering (China), 1986, 37(3): 269-278. [22] 陈嘉宾, 蔡振业, 林纪方. 人工汽化中心表面核状沸腾传热的研究——(II)关于核状沸腾传热机理以及汽化中心的大小和密度对沸腾给热系数的影响[J]. 化工学报, 1986, 37(3): 279-286. Chen Jiabin, Cai Zhenye, Lin Jifang.Boiling on surfaces with artificial nucleation sites (II) mechanism of nucleate boiling and effect of cavity size and cavity density on boiling heat transfer[J]. Journal of Chemical Industry and Engineering (China), 1986, 37(3): 279-286. [23] 王凤魁, 陈嘉宾. 池式沸腾人工汽化中心表面汽泡脱离频率的研究[J]. 化工学报, 1989, 40(4): 438-444. Wang Fengkui, Chen Jiabin.Determination of bubble departure frequency on artificial cavities in nucleate pool boiling[J]. Journal of Chemical Industry and Engineering (China), 1989, 40(4): 438-444. [24] 张璐. 核态池沸腾中近壁面汽泡动力学特性对传热的影响[D]. 北京: 清华大学, 2008. [25] 贾涛. 核态池沸腾中汽化核心密度和汽化核心处温度波动的研究[D]. 北京: 中国科学院工程热物理所, 2006.