|
|
Review on Advanced Flywheel Energy Storage System With Large Scale |
Dai Xingjian1, Deng Zhanfeng2, Liu Gang3, Tang Xisheng4, Zhang Fengge5, Deng Zigang6 |
1. Tsinghua University Beijing 100084 China 2. State Grid Electric Power Research Institute Beijing 100192 China 3. Beihang University Beijing 100191 China 4. Institute of Electrical Engineering China Academic of Sciences Beijing 100190 China5. Shenyang University of Technology Shenyang 110178 China 6.Southwest Jiaotong Unversity Chengdu 610031 China |
|
|
Abstract The performance of the flywheel energy storage were promoted greatly with the application of advanced composites, magnetic bearings, high speed motor and power electronics. The commercialization of modern FES has made great success in recent 10 years. The merits of FES include long life time, high power, high efficiency and green. However, the shortcomings of FES are small scale in energy for single unit and high self-discharging. Therefore, the FES are very suitable for the application of frequency leveling of the grid, capacity leveling of the small grid, the transient stabilizing of the grid, power quality improvement, braking energy regenerating and high pulse power. The FES technology would be used in large grid with the developing of combination technology of FES unit and high temperature super-conductivity bearing. The research on FES should be supported by the government to develop FES industrial products with high technology.
|
Received: 26 July 2010
Published: 07 March 2014
|
|
|
|
|
[1] Bolund B, Bernhoff H, Leijon M. Flywheel energy and power storage systems[J]. Renewable and Sustainable Energy Reviews, 2007, 11(2): 235-258. [2] Ray P K, Mohanty S R, Kishor N. Frequency regulation of hybrid renewable energy system for large band wind speed variation[C]. 2009 International Conference on Power Systems, 2010: 1-6. [3] Kweder J, Wildfire P, Panther C, et al. Design of a flywheel based energy storage and distribution system for rural villages in China[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2009, 2(1): 703-712. [4] Wang M H. Application of flywheel energy storage system to enhance transient stability of power systems[J]. Electric Power Components and Systems, 2005, 33(4): 463-479. [5] Samineni S, Johnson B K, Hess H L, et al. Modeling and analysis of a flywheel energy storage system for voltage sag correction[J]. IEEE Transactions on Industry Applications, 2006, 42(1): 42-52. [6] Brown D R, Chvala W D. Flywheel energy storage: an alternative to batteries for UPS systems[J]. Energy Engineering: Journal of the Association of Energy Engineering, 2005, 102(5): 7-26. [7] Swett D W, Blanche I V. Flywheel charging module for energy storage used in electromagnetic aircraft launch system[J]. IEEE Transactions on Magnetics, 2005, 41(1): 525-528. [8] Hara M, Yamamura N, Ishida M, et al. Compensation of power fluctuations of wind power generation by means of biomass gas turbine generator and flywheel energy storage equipment[J]. Electrical Engineering in Japan, 2010, 170(3): 1-8. [9] Takahashi R, Tamura J. Frequency control of isolated power system with wind farm by using flywheel energy storage system[C]. Proceedings of the 2008 International Conference on Electrical Machines, 2008. [10] Ryoman A, Nishio T, Futami M, et al. Certification of power system stabilizing by adjustable speed generator with flywheel effect[J]. Transactions of the Institute of Electrical Engineers of Japan B, 2002, 122(9): 985-995. [11] Tzeng J, Emerson R, Moy P. Composite flywheels for energy storage[J]. Composites Science and Technology, 2006, 66(1): 2520-2527. [12] Bailey C, Saban D M, Guedes P P. Design of high-speed direct-connected permanent-magnet motors and generators for the petrochemical industry[J]. IEEE Transactions on Industry Applications, 2009, 45(3): 1159-1165. [13] Pan Z, Bkayrat R A. Modular motor/converter system topology with redundancy for high-speed, high-power motor applications[J]. IEEE Transactions on Power Electronics, 2010, 25(2): 408-416. [14] Strasik M, Hull J R, Mittleider J A, et al. An overview of Boeing flywheel energy storage systems with high-temperature superconducting bearings[J]. Superconductor Science and Technology, 2010, 23(3): 383-390. [15] Werfel F N, Floegel Delor U, Riedel T, et al. A compact HTS 5kWh/250kW flywheel energy storage system[J]. IEEE Transactions on Applied Supercon- ductivity, 2007, 17(2): 2138-2141. [16] Sun X D, Koh K H, Yu B G, et al. Fuzzy-logic-based V/f control of an induction motor for a DC grid power-leveling system using flywheel energy storage equipment[J]. IEEE Transactions on Industrial Electronics, 2009, 56(8): 3161-3168. [17] 戴兴建, 唐长亮, 张剀. 先进飞轮储能电源工程应用研究进展[J]. 电源技术, 2009, 33(11): 1026-1028. [18] 周龙, 齐智平. 解决配电网电压暂降问题的飞轮储能单元建模与仿真[J]. 电网技术, 2009, 33(19): 152-158. [19] 戴兴建, 于涵, 李奕良. 飞轮储能系统充放电效率实验研究[J]. 电工技术学报, 2009, 24(3): 20-24. [20] 张建成. 用于配电网的飞轮储能系统设计[J]. 华北电力大学学报, 2005, 12(S1): 38-40. [21] 杨春帆, 刘刚, 张庆荣. 磁悬浮姿控/储能飞轮能量转换控制系统设计与实验研究[J]. 航天控制, 2007, 25(3): 91-96. [22] 毛天祥. 复合材料飞轮储能系统发展现状: 固体力学进展及应用—庆贺李敏华院士90华诞文集[M]. 北京: 科学出版社, 2007. [23] 戴兴建, 李奕良, 于涵. 高储能密度飞轮结构设计方法[J]. 清华大学学报, 2008, 48(3): 379-382. [24] 王凤翔. 高速电机的设计特点及相关技术研究[J]. 沈阳工业大学学报, 2006, 28(3): 258-264. [25] 王继强. 高速永磁电机的机械和电磁特性研究[D]. 沈阳: 沈阳工业大学, 2007. [26] 邓自刚, 王家素, 王素玉, 等. 高温超导飞轮储能技术发展现状[J]. 电工技术学报, 2008, 23(12): 1-10. [27] 邓自刚, 林群煦, 王家素, 等. 高温超导磁悬浮飞轮储能系统样机[J]. 低温物理学报, 2009, 31(4): 311-314. [28] 朱俊星, 姜新建, 黄立培. 基于飞轮储能的动态电压恢复器补偿策略的研究[J]. 电工电能新技术, 2009, 28(1): 46-50. |
|
|
|