|
|
Parameter Identification of Power Electronic Circuit Based on Transfer Function Model and Genetic Algorithm |
Sun Fengyan, Wang Youren, Lin Hua, Cui Jiang, Jiang Yuanyuan |
Nanjing University of Aeronautics and Astronautics Nanjing 210016 China |
|
|
Abstract Parametric identification method of power electronic circuits is studied in this paper. A new method based on transfer function model in frequency domain (TFMFD) and genetic algorithm (GA) for the parameter identification of power electronic circuits is proposed. Taking the Buck converter circuit as an example, the parameter identification of power electronic circuits is achieved. Firstly, the Buck converter’s transfer function model in frequency domain is established. Secondly, the output voltage and the inductor input voltage are selected as monitoring signals. And the monitoring signals are analyzed by FFT in frequency domain, and the frequency-domain characteristics of the transfer function model are obtained. Lastly, by selecting appropriate frequency points in transfer function model, the frequency response characteristics and GA method are used to estimate the circuit’s parameter. The experimental results show that the new method can be effectively applied in the parameter identification of power electronic circuits.
|
Received: 09 April 2010
Published: 07 March 2014
|
|
|
|
|
[1] Lall P, Hande M, Bhat C, et al. Prognostics health monitoring (PHM) for prior-damage assessment in electronics equipment under thermo-mechanical loads[C]. Proceedings of the Electronic Components and Technology Conference. New York, USA, 2007: 1097-1111. [2] Ma Zhangshan. A new life system approach to the prognostic and health management (PHM) with survival analysis, dynamic hybrid fault models, evolutionary game theory, and three-layer survivability analysis[C]. Proceedings of IEEE Aerospace Conference, Big Sky, Montana, USA, 2009: 1-20. [3] Orsagh R, Brown D, Roemer M, et al. Prognostic health management for avionics system power supplies[C]. Proceedings of the IEEE Aerospace Conference, Big Sky, Montana, USA, 2005: 3585-3591. [4] 崔江, 王友仁, 刘权. 基于高阶谱与支持向量机的电力电子电路故障诊断技术[J]. 中国电机工程学报, 2007, 27(10): 62-66. [5] 崔江, 王友仁. 采用基于模糊推理的分类器融合方法诊断电力电子电路参数故障[J]. 中国电机工程学报, 2009, 29(18): 54-59. [6] 肖岚, 李睿. 逆变器并联系统功率管开路故障诊断研究[J]. 中国电机工程学报, 2006, 26(4): 99-104. [7] 汤清泉, 颜世超, 卢松升, 等. 三电平逆变器的功率管开路故障诊断[J]. 中国电机工程学报, 2008, 28(21): 26-32. [8] 陈如清. 采用新型粒子群算法的电力电子装置在线故障诊断方法[J]. 中国电机工程学报, 2008, 28(24): 70-74. [9] 罗慧, 王友仁, 崔江, 等. 电力电子电路多源特征层融合智能故障诊断方法[J]. 电机与控制学报, 2010, 14(4): 92-96. [10] Shetty P, Mylaraswamy D, Ekambaram T, et al. A hybrid prognostic model formulation system identification and health estimation of auxiliary power units[C]. Proceedings of the IEEE Aerospace Conference, Big Sky, Montana, USA, 2006: 10. [11] 马皓, 毛兴云, 徐德鸿. 基于混杂系统模型的DC/DC电力电子电路参数辨识[J]. 中国电机工程学报, 2005, 25(10): 50-54. [12] 张志学, 马皓, 毛兴云. 基于混杂模型系统理论的电力电子电路故障诊断[J]. 中国电机工程学报, 2005, 25(3): 49-53. |
|
|
|