Abstract:With constantly higher frequency and input voltage, the efficiency of the VRM which is designed according to the critical inductance suffers a lot due to high current ripple-related loss. A larger inductance can improve the efficiency and reduce the current ripple, but it may affect the transient response performance due to the duty saturation in the load transient. This paper presents a hybrid AVP control method with larger inductance and related topology for VRM applications, the proposed method can improve the efficiency without sacrificing the transient response performance. The experimental results from two 12V-1.6V/20A prototypes designed with critical and larger inductance respectively verify the effectiveness of efficiency improvement and the transient response of the proposed method.
袁伟, 张军明, 钱照明. 一种混合式自适应电压定位控制策略及12V电压调节模块拓扑[J]. 电工技术学报, 2010, 25(10): 115-121.
Yuan Wei, Zhang Junming, Qian Zhaoming. A Hybrid Adaptive Voltage Position Control and 12V Voltage Regulator Module. Transactions of China Electrotechnical Society, 2010, 25(10): 115-121.
[1] VRM 9.0 DC-DC Converter Design Guidelines[S]. Intel Document, 2001. [2] Miftakhutdinov R. Analysis of synchronous buck converter with hysteretic controller at high slew-rate load current transients[C]. Proc. High Frequency Power Conversion Conf. (HFPC), 1999: 55-69. [3] Designing Fast Response Synchronous Buck Regulators Using the TPS5210[EB]. Application Report, Texas Instrument, March 1999. [4] Gorder D, Pelletier W R. V2 architecture provides ultra fast transient response in switch mode power supplies[C]. In Proc. HFPC Conf., 1996: 19-23. [5] Qu S. Modeling and design considerations of V2 controlled buck regulator[C]. In Proc. IEEE APEC Conf., 2001: 507-513. [6] Zhou X W, et al. Investigation of candidate VRM topologies for future microprocessors[C]. Proc. IEEE Appl. Power Electron. Conf., 1998: 145-150. [7] Panov Y, Jovanovic M. Design considerations for 12-V/1.5-V, 50-A voltage regulator modules[J]. IEEE Trans. on Power Electron., 2001, 16(6): 777-783. [8] Wong P L, Xu P, Yang P, et al. Performance improvements of interleaving VRMs with coupling inductors[J]. IEEE Trans. on Power Electron., 2001, 16(4): 499-507. [9] Li J, Sullivan C R, Schultz A. Coupled inductor design optimization for fast-response low-voltage DC-DC converters[C]. Proc. IEEE APEC, 2002, 2: 817-823. [10] Yao K, Xu M, Meng Y, et al. Design considerations for VRM transient response based on the output impedance[J]. IEEE Trans. on Power Electron., 2003, 18(6): 1270-1277. [11] Yao K, Ren Y C, et al. Adaptive voltage position design for voltage regulators[C]. Proc. APEC, 2004: 272-278. [12] Sun J, Zhou J, Xu M, et al. A novel input-side current sensing method to achieve AVP for future VRs[J]. IEEE Trans. on Power Electron., 2006, 21(5): 1235-1241. [13] Lee M, Chen D, et al. Comparisons of three control schemes for adaptive voltage position (AVP) droop for VRMs applications[C]. Proc. PEMC, 2006: 206- 211. [14] Lee M, Chen D, et al. Compensator design for adaptive voltage positioning (AVP) for multiphase VRMs[C]. IEEE PESC, 2006: 200-206. [15] Wong P L, Lee F C, Xu P, et al. Critical inductance in voltage regulator modules[J]. IEEE Trans. on Power Electron., 2002, 17(4): 485-492. [16] Zhang F, Zhang J M, Xu M, et al. A novel high performance voltage regulator module[C]. Proc. APEC, 2001: 258-261. [17] Barrado A, Lázaro A, et al. The fast response doublebuck DC-DC converter(FRDB): operation and output filter influence[J]. IEEE Trans. on Power Electron., 2005, 20(6): 1261-1269. [18] Barrado A, Quintero J, Lázaro A, et al. Linear- non-linear control applied in multiphase VRM[C]. Proc. APEC, 2005: 904-909. [19] Xu P, Wei J, Lee F C. Mutiphase coupled-buck converter-a novel high efficient 12V voltage regulator module[J]. IEEE Trans. on Power Electron., 2003, 18(1): 74-82. [20] Intersil. Microprocessor CORE Voltage Regulator Two Phase Buck PWM Controller. Doc[EB]. ISL6560 Datasheet, 2005.