1. State Key Laboratory of Reliability and Interlligence of Electrical Equipment Hebei University of Technology Tianjian 300130 China;
2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjian 300130 China
The giant magnetostrictive material TbDyFe alloy has temperature-sensitive characteristics. In this paper, the dynamic magnetic characteristic curves of TbDyFe alloy are measured under variable temperature conditions at different frequencies f and magnetic density amplitude Bm. When the frequency f and magnetic density amplitude Bm are fixed, with the increase of the ambient temperature (from 10℃ to 80℃), the amplitude permeability gradually increases, the dynamic hysteresis loop becomes narrower laterally, the required magnetic field strength decreases, and the magnetic energy loss gradually decreases. Since the existing loss calculation model cannot effectively characterize the temperature effect that leads to errors in the loss calculation results, a high-frequency loss calculation model for magnetostrictive materials under variable temperature conditions is proposed. The model corrects the loss coefficients by introducing temperature-related terms. Considering the influence of high-frequency hysteresis characteristics and skin effect, the loss additional magnetic flux density terms and loss additional frequency terms are introduced. Accordingly, an improved loss calculation model that can effectively consider the temperature effect is established. The comparison of measured and calculated results verifies the accuracy and feasibility of the model.
黄文美, 夏志玉, 郭萍萍, 翁玲. 变温条件下TbDyFe合金高频磁特性和损耗特性分析[J]. 电工技术学报, 2022, 37(1): 133-140.
Huang Wenmei, Xia Zhiyu, Guo Pingping, Weng Ling. Analysis of High Frequency Magnetic Properties and Loss Characteristics of TbDyFe Alloy under Variable Temperature. Transactions of China Electrotechnical Society, 2022, 37(1): 133-140.
[1] 刘素贞, 王淑娟, 张闯, 等. 钢板电磁超声表面波的仿真分析及缺陷定量检测[J]. 电工技术学报, 2020, 35(1): 97-105.
Liu Suzhen, Wang Shujuan, Zhang Chuang, et al. Simulation analysis and defect quantitative detection of electromagnetic ultrasonic surface wave of steel plate[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 97-105.
[2] 黄文美, 薛胤龙, 王莉, 等. 考虑动态损耗的超磁致伸缩换能器的多场耦合模型[J]. 电工技术学报, 2016, 31(7): 173-178.
Huang Wenmei, Xue Yinlong, Wang Li, et al. Multi- field coupling model of giant magnetostrictive trans- ducer considering dynamic loss[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 173-178.
[3] 周景涛, 何忠波, 刘国平, 等. 惯性式超磁致伸缩直线驱动器建模与实验[J]. 中国电机工程学报, 2020, 40(10): 3350-3359.
Zhou Jingtao, He Zhongbo, Liu Guoping, et al. Modeling and experiment of inertial giant magneto- strictive linear actuator[J]. Proceedings of the CSEE, 2020, 40(10): 3350-3359.
[4] 洪兴, 张洪平, 赵栋梁.超磁致伸缩材料的温度性能研究进展[J]. 金属功能材料, 2007(4): 32-35.
Hong Xing, Zhang Hongping, Zhao Dongliang.Research progress on the temperature performance of giant magnetostrictive materials[J]. Functional Metal Materials, 2007(4): 32-35.
[5] 段娜娜, 徐伟杰, 李永建, 等. 一种考虑温度和压力影响的磁滞模型及其实验验证[J]. 电工技术学报, 2019, 34(13): 2686-2692.
Duan Nana, Xu Weijie, Li Yongjian, et al. A hysteresis model considering the effects of temper- ature and pressure and its experimental verification[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2686-2692.
[6] 冯端.固体物理学大辞典[M]. 北京: 高等教育出版社, 1995.
[7] Zheng Xiaojiang, Sun Le.A nonlinear constitutive model of magneto-thermo-mechanical coupling for giant magnetostrictive materials[J]. Journal of Applied Physics, 2006, 100(6): 189.
[8] Albach M, Durbaum T, Brockmeyer A, et al. Calculating core losses in transformers for arbitrary magnetizing currents a comparison of different approaches[C]//Power Electronics Specialists Con- ference(PESC Record), Baveno, Italy, 1996: 1463-1468.
[9] 郜春艳, 黄文美, 刘卓锟, 等. Terfenol-D高频磁滞特性测试与分析[J]. 传感技术学报, 2018, 31(4): 518-522.
Gao Chunyan, Huang Wenmei, Liu Zhuokun, et al. Terfenol-D high-frequency hysteresis characteristics test and analysis[J]. Journal of Transducer Techno- logy, 2018, 31(4): 518-522.
[10] 翁玲, 常振, 孙英, 等. 不同磁致伸缩材料的高频磁能损耗分析与实验研究[J]. 电工技术学报, 2020, 35(10): 2079-2087.
Weng Ling, Chang Zhen, Sun Ying, et al. High- frequency magnetic energy loss analysis and experimental research of different magnetostrictive materials[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2079-2087.
[11] 黄文美, 吴晓晴, 李亚芳, 等. TbDyFe合金的高频动态磁特性及损耗特性分析[J]. 仪器仪表学报, 2020, 41(1): 215-222.
Huang Wenmei, Wu Xiaoqing, Li Yafang, et al. High frequency dynamic magnetic characteristics and loss characteristics analysis of TbDyFe alloy[J]. Journal of Instrumentation, 2020, 41(1): 215-222.
[12] Bertotti G.General properties of power losses in soft ferromagnetic materials[J]. IEEE Transactions on Magnetics, 2002, 24(1): 621-630.
[13] 赵志刚, 胡鑫剑.考虑畸变磁通及局部磁滞回环影响的层叠铁心损耗有效算法及验证[J]. 中国电机工程学报, 2019, 39(24): 7436-7443, 7517.
Zhao Zhigang, Hu Xinjian.Effective algorithm and verification of laminated core loss considering the effects of distorted magnetic flux and local hysteresis loops[J]. Proceedings of the CSEE, 2019, 39(24): 7436-7443, 7517.
[14] 刘刚, 孙立鹏, 王雪刚.正弦及谐波激励下的铁心损耗计算方法改进及仿真应用[J]. 电工技术学报, 2018, 33(21): 4909-4918.
Liu Gang, Sun Lipeng, Wang Xuegang.Improvement of core loss calculation method under sine and harmonic excitation and simulation application[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 4909-4918.
[15] 迟青光, 张艳丽, 陈吉超, 等. 非晶合金铁心损耗与磁致伸缩特性测量与模拟[J]. 电工技术学报, 2021, 36(18): 3876-3883.
Chi Qingguang, Zhang Yanli, Chen Jichao, et al. Measurement and modeling of loss and magnetostrictive properties for the amorphous alloy core[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3876-3883.