The Optimal Working Time of Battery Storage Power Station Improving Power Grid Transient Stability Based on Extended Equal Area Criteria Rule
Sun Peidong1,2, Li Peiqiang1,2, Cao Pengcheng1,2, Deng Huiqiong1,2
1. College of Information Science and Engeering Funjian University of Technology Fuzhou 350118 China; 2. Smart Grid Simulation Analysis and Integrated Control Fujian University Engineering Research Center Fuzhou 350118 China
Abstract:When battery storage stations participating in power system transient stability emergency control, the battery charge-discharge frequency is very high, so the long-time operation will shorten the battery working life. It could be found that the actual working time of the energy storage station in the process of transient stability control is very short by extensive simulation. Therefore, it is necessary to calculate its optimal working time. In this paper, the battery energy storage transient model was established. The damping torque method was used to analyze the mechanism of improving the stability of power grid by energy storage station. Meanwhile, the influence of its different capacity configurations and different connecting positions was expounded. The data of rotor speed, power angle, electromagnetic power and mechanical power of the generator were collected on-line in time. Based on the extended equal area criteria,the optimal working time of the energy storage station was calculated by numerical integration, which could make it quit operation as early as possible ensuring the stability of the power grid. Through the simulation of Power System Analysis Synthesis Program, the accuracy and engineer-practicability of the theory are verified.
孙培栋, 李培强, 曹鹏程, 邓慧琼. 基于扩展等面积定则的储能电站提高电网暂态稳定最优工作时间的研究[J]. 电工技术学报, 2020, 35(19): 3996-4008.
Sun Peidong, Li Peiqiang, Cao Pengcheng, Deng Huiqiong. The Optimal Working Time of Battery Storage Power Station Improving Power Grid Transient Stability Based on Extended Equal Area Criteria Rule. Transactions of China Electrotechnical Society, 2020, 35(19): 3996-4008.
[1] 李建林, 马会萌, 惠东. 储能技术融合分布式可再生能源的现状及发展趋势[J]. 电工技术学报, 2016, 31(14): 1-10. Li Jianlin, Ma Huimeng, Hui Dong.Current situation and development trend of energy storage technology integration and distributed renewable energy[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 1-10. [2] 李建林, 马会萌, 袁晓冬, 等. 规模化分布式储能的关键应用技术研究综述[J]. 电网技术, 2017, 41(10): 3365-3375. Li Jianlin, Ma Huimeng, Yuan Xiaodong, et al.Review on key application technologies of large-scale distributed energy storage[J]. Power System Technology, 2017, 41(10): 3365-3375. [3] 马伟, 王玮, 吴学智, 等. 平抑光伏并网功率波动的混合储能系统优化调度策略[J]. 电力系统自动化, 2019, 43(3): 58-69. Ma Wei, Wang Wei, Wu Xuezhi, et al.Optimal dispatching strategy of hybrid energy storage system for suppressing power fluctuation of photovoltaic grid connected system[J]. Automation of Electric Power Systems, 2019, 43(3): 58-69. [4] 李国杰, 唐志伟, 聂宏展, 等. 钒液流储能电池建模及其平抑风电波动研究[J]. 电力系统保护与控制, 2010, 38(22): 115-119. Li Guojie, Tang Zhiwei, Nie Hongzhan, et al.Research on modeling and suppressing wind power fluctuation of vanadium liquid flow energy storage battery[J]. Power System Protection and Control, 2010, 38(22): 115-119. [5] 崔强, 王庆军, 童亦斌, 等. 基于半桥级联的电池柔性成组储能系统及控制策略[J]. 电工技术学报, 2019, 34(5): 954-962. Cui Qiang, Wang Qingjun, Tong Yibin, et al.Flexible group battery energy storage system and control strategy based on half bridge cascade[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 954-962. [6] 马智慧, 李欣然, 谭庄熙, 等. 考虑储能调频死区的一次调频控制方法[J]. 电工技术学报, 2019, 34(10): 2102-2115. Ma Zhihui, Li Xinran, Tan Zhuangxi, et al.Primary frequency modulation control method considering energy storage frequency modulation dead zone[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2102-2115. [7] 杜鹏, 米增强, 贾雨龙, 等. 基于网损灵敏度方差的配电网分布式储能位置与容量优化配置方法[J]. 电力系统保护与控制, 2019, 47(6): 103-109. Du Peng, Mi Zengqiang, Jia Yulong, et al.Optimal allocation method of distributed energy storage location and capacity based on variance of network loss sensitivity[J]. Power System Protection and Control, 2019, 47(6): 103-109. [8] 唐巍, 李天锐, 张璐, 等. 基于三相四线制最优潮流的低压配电网光伏-储能协同控制[J]. 电力系统自动化, 2020, 44(12): 31-42. Tang Wei, Li Tianrui, Zhang Lu, et al.Photovoltaic energy storage collaborative control of low voltage distribution network based on optimal power flow of three-phase four wire system[J]. Automation of Electric Power Systems, 2020, 44(12): 31-42. [9] 葛维春, 孙恺, 葛延峰, 等. 计及大规模全钒液流电池储能系统外特性建模与仿真[J]. 电力系统保护与控制, 2019, 47(17): 171-179. Ge Weichun, Sun Kai, Ge Yanfeng, et al.Modeling and simulation of external characteristics of large-scale all vanadium liquid flow battery energy storage system[J]. Power System Protection and Control, 2019, 47(17): 171-179. [10] 黄麒元, 刘娇娇, 王致杰. 电池模型在微电网调度的应用研究[J]. 电力系统保护与控制, 2016, 44(4): 97-102. Huang Qiyuan, Liu Jiaojiao, Wang Zhijie.Research on the application of kinetic battery model in microgrid dispatching[J]. Power System Protection and Control, 2016, 44(4): 97-102. [11] 曹生允, 宋春宁, 林小峰, 等. 用于电池储能系统并网的PCS控制策略研究[J]. 电力系统保护与控制, 2014, 42(24): 93-98. Cao Shengyun, Song Chunning, Lin Xiaofeng, et al.Study on PCS control strategy for grid connection of battery energy storage system[J]. Power System Protection and Control, 2014, 42(24): 93-98. [12] 蔡国伟, 孔令国, 潘超, 等. 风光储联合发电系统的建模及并网控制策略[J]. 电工技术学报, 2013, 28(9): 196-204. Cai Guowei, Kong Lingguo, Pan Chao, et al.Modeling and grid connected control strategy of wind power storage combined power generation system[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 196-204. [13] 李妍, 荆盼盼, 王丽, 等. 通用储能系统数学模型及其PSASP建模研究[J]. 电网技术, 2012, 36(1): 51-57. Li Yan, Jing Panpan, Wang Li, et al.Research on mathematical model and PSASP modeling of general energy storage system[J]. Power System Technology, 2012, 36(1): 51-57. [14] 李建林, 牛萌, 张博越, 等. 电池储能系统机电暂态仿真模型[J]. 电工技术学报, 2018, 33(8): 1911-1918. Li Jianlin, Niu Meng, Zhang Boyue, et al.Electromechanical transient simulation model of battery energy storage system[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1911-1918. [15] 李相俊, 王上行, 惠东. 电池储能系统运行控制与应用方法综述及展望[J]. 电网技术, 2017, 41(10): 3315-3325. Li Xiangjun, Wang Shanghang, Hui Dong.Overview and prospect of operation control and application methods of battery energy storage system[J]. Power System Technology, 2017, 41(10): 3315-3325. [16] 郭伟, 赵洪山. 基于改进分布式一致性算法的电池储能阵列分组控制策略[J]. 电工技术学报, 2019, 34(23): 4991-5000. Guo Wei, Zhao Hongshan.Grouping control strategy of battery energy storage array based on improved distributed consistency algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 4991-5000. [17] 熊连松, 修连成, 王慧敏, 等. 储能系统抑制电网功率振荡的机理研究[J]. 电工技术学报, 2019, 34(20): 4373-4380. Xiong Liansong, Xiu Liancheng, Wang Huimin, et al.Study on the mechanism of energy storage system restraining power oscillation in power grid[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4373-4380. [18] 党杰, 石梦璇, 梁辰, 等. 基于储能控制的低频振荡抑制方法及作用机理[J]. 高电压技术, 2019, 45(12): 4029-4037. Dang Jie, Shi Mengxuan, Liang Chen, et al.Low frequency oscillation suppression method and mechanism based on energy storage control[J]. High Voltage Engineering, 2019, 45(12): 4029-4037. [19] 叶小晖, 刘涛, 吴国旸, 等. 电池储能系统的多时间尺度仿真建模研究及大规模并网特性分析[J].中国电机工程学报, 2015, 35(11): 2635-2644. Ye Xiaohui, Liu Tao, Wu Guomin, et al.Multi time scale simulation modeling research and large-scale grid connection characteristic analysis of battery energy storage system[J]. Proceedings of the CSEE, 2015, 35(11): 2635-2644. [20] 韦肖燕, 李欣然, 钱军, 等. 采用储能电源辅助的暂态稳定紧急控制方法[J]. 电工技术学报, 2017, 32(18): 286-300. Wei Xiaoyan, Li Xinran, Qian Jun, et al.Emergency control method of transient stability assisted by energy storage power[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 286-300. [21] 林俐, 杨以涵. 基于扩展等面积定则的含大规模风电场电力系统暂态稳定性分析[J]. 电力系统保护与控制, 2012, 40(12): 105-110. Lin Li, Yang Yihan.Power system transient stability analysis with large scale wind farms based on extended equal area rule[J]. Power System Protection and Control, 2012, 40(12): 105-110. [22] 薛禹胜. EEAC与直接法的机理比较(三)定性判稳与定量分析[J]. 电力系统自动化, 2001, 25(13): 1-5. Xue Yusheng.Mechanism comparison between EEAC and direct method (3) qualitative stability and quantitative analysis[J]. Automation of Electric Power Systems, 2001, 25(13): 1-5. [23] 薛禹胜. EEAC与直接法的机理比较(四)回顾与瞻望[J]. 电力系统自动化, 2001, 25(14): 1-6. Xue Yusheng.Mechanism comparison between EEAC and direct method(4) review and prospect[J]. Automation of Electric Power Systems, 2001, 25(14): 1-6. [24] 沈艳, 杨丽宏, 王立刚, 等. 高等数值计算[M]. 北京: 清华大学出版社, 2014. [25] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002.