Abstract:Wireless power transfer (WPT) for multiple loads technology is one of the research hotspots in recent years. In view of its load diversity, multi-direction, control complexity and other problems, this paper reviewed and analyzed the existing technologies systematically. Firstly, according to the transmitting mode, shape and structure of transmitting coil, the WPT system for multiple loads is divided into plane coil class, space coil class and non-coil class. The characteristics of single input multiple output type, multiple input multiple output type and multiple output with relay coils of planar coil type are further analyzed. Besides, the characteristics of multi-coil orthogonal type, rotating coil type, single-wire three-dimensional coil type, multi-coil three-dimensional type and Helmholtz coil type of the space coil class are studied. Meanwhile, the characteristics of cavity resonant type and microwave transmission type are discussed. Then, the transmitter structure, transmission principle and transmission characteristics of different types of the WPT system for multiple loads are compared, and their applicable occasions are proposed. Finally, the technical bottleneck of WPT system for multiple loads is analyzed, and the future development is prospected.
罗成鑫, 丘东元, 张波, 肖文勋, 陈艳峰. 多负载无线电能传输系统[J]. 电工技术学报, 2020, 35(12): 2499-2516.
Luo Chengxin, Qiu Dongyuan, Zhang Bo, Xiao Wenxun, Chen Yanfeng. Wireless Power Transfer System for Multiple Loads. Transactions of China Electrotechnical Society, 2020, 35(12): 2499-2516.
[1] 张波, 疏许健, 黄润鸿. 感应和谐振无线电能传输技术的发展[J]. 电工技术学报, 2017, 32(18): 3-17. Zhang Bo, Shu Xujian, Huang Runhong.The development of inductive and resonant wireless power transfer technology[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 3-17. [2] Kallel B, Kanoun O, Trabelsi H.Large air gap misalignment tolerable multi-coil inductive power transfer for wireless sensors[J]. IET Power Electronics, 2016, 9(8): 1768-1774. [3] 戴卫力, 费峻涛, 肖建康, 等. 无线电能传输技术综述及应用前景[J]. 电气技术, 2010, 11(7): 1-6. Dai Weili, Fei Juntao, Xiao Jiankang, et al.An overview and application prospect of wireless power transmission technology[J]. Electrical Engineering, 2010, 11(7): 1-6. [4] 范兴明, 高琳琳, 莫小勇, 等. 无线电能传输技术的研究现状与应用综述(英文)[J]. 电工技术学报, 2019, 34(7): 1353-1380. Fan Xingming, Gao Linlin, Mo Xiaoyong, et al.Overview of research status and application of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1353-1380. [5] Kim G, Boo S, Kim S, et al.Control of power distribution for multiple receivers in SIMO wireless power transfer system[J]. Journal of Electromagnetic Engineering and Science, 2018, 18(4): 221-230. [6] Kim S, Hwang S, Kim S, et al.Investigation of single-input multiple-output wireless power transfer systems based on optimization of receiver loads for maximum efficiencies[J]. Journal of Electromagnetic Engineering and Science, 2018, 18(3): 145-153. [7] 卢伟国, 陈伟铭, 李慧荣. 多负载多线圈无线电能传输系统各路输出的恒压特性设计[J]. 电工技术学报, 2019, 34(6): 1137-1147. Lu Weiguo, Chen Weiming, Li Huirong.Multiload constant voltage design for multiload and multicoil wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1137-1147. [8] Nguyen M, Chou Y, Plesa D, et al.Multiple-inputs and multiple-outputs wireless power combining and delivering systems[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6254-6263. [9] Gong Feixiang, Cong Yanping, Wei Zhiqiang, et al.Analysis of the multi-layer printed spiral coil for wireless power transfer system used in medical implants[C]//2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Shenzhen, China, 2016: 460-462. [10] Yang Gang, Moghadam M, Zhang Rui.Magnetic MIMO signal processing and optimization for wireless power transfer[J]. IEEE Transactions on Signal Processing, 2017, 65(11): 2860-2874. [11] Jadidian J, Katabi D.Magnetic MIMO: how to charge your phone in your pocket[C]//Proceedings of the 20th annual international conference on Mobile computing and networking, Maui Hawaii, USA, 2014: 495-506. [12] 黄智慧, 王林, 邹积岩. 双中继和三中继线圈位置参数对无线电能传输功率的影响[J]. 电工技术学报, 2017, 32(5): 208-214. Huang Zhihui, Wang Lin, Zou Jiyan.The influence of coil location parameters to load power in wireless power transmission with two or three relay coils[J]. Transactions of China Electrotechnical Society, 2017, 32(5): 208-214. [13] Lee J, Lee K, Cho D.Stability improvement of transmission efficiency based on a relay resonator in a wireless power transfer system[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3297-3300. [14] Zhang Yiming, Lu Ting, Zhao Zhengming, et al.Wireless power transfer to multiple loads over various distances using relay resonators[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(5): 337-339. [15] Cheng Chenwen, Lu Fei, Zhou Zhe, et al.Loadindependent wireless power transfer system for multiple loads over a long distance[J]. IEEE Transactions on Power Electronics, 2019, 34(9): 9279-9288. [16] 刘婉. 基于磁耦合谐振无线电能传输谐振器阵列的研究[D]. 南昌: 南昌大学, 2016. [17] Yin Jian, Lin Deyan, Lee C, et al.Front-end monitoring of multiple loads in wireless power transfer systems without wireless communication systems[J]. IEEE Transactions on Power Electronics, 2016, 31(3): 2510-2517. [18] Zhang Cheng, Lin Deyan, Tang Niang, et al.A novel electric insulation string structure with high-voltage insulation and wireless power transfer capabilities[J]. IEEE Transactions on Power Electronics, 2017, 33(1): 87-96. [19] Wang Shengming, Hu Zhaoyang, Rong Cancan, et al.Planar multiple-antiparallel square transmitter for position-insensitive wireless power transfer[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(2): 188-192. [20] Kim J, Kim D, Park Y.Free-positioning wireless power transfer to multiple devices using a planar transmitting coil and switchable impedance matching networks[J]. IEEE Transactions on Microwave Theory & Techniques, 2016, 64(11): 3714-3722. [21] Duong Q T, Okada M.Maximum efficiency formulation for multiple-input multiple-output inductive power transfer systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3463-3477. [22] Zhu Qi, Su Mei, Sun Yao, et al.Field orientation based on current amplitude and phase angle control for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4758-4770. [23] Zhang Cheng, Lin Deyan, Ron Hui Shu-Yuen. Basic control principles of omnidirectional wireless power transfer[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 5215-5227. [24] Han Hua, Mao Zhu, Zhu Qi, et al.A 3D wireless charging cylinder with stable rotating magnetic field for multi-load application[J]. IEEE Access, 2019, 7: 35981-35997. [25] Lin Deyan, Zhang Cheng, Ron Hui Shu-Yuen. Mathematical analysis of omnidirectional wireless power transfer—part-I: two-dimensional systems[J]. IEEE Transactions on Power Electronics, 2017, 32(1): 625-633. [26] Lin Deyan, Zhang Cheng, Ron Hui Shu-Yuen. Mathematic analysis of omnidirectional wireless power transfer—part-II three-dimensional systems[J]. IEEE Transactions on Power Electronics, 2017, 32(1): 613-624. [27] Dai Zhongyu, Fang Zhijian, Huang Hong, et al.Selective omnidirectional magnetic resonant coupling wireless power transfer with multiple-receiver system[J]. IEEE Access, 2018, 6: 19287-19294. [28] Mei Tianming, Liu Fuxin, Jiang Chong, et al.Magnetic-field-model based analysis of two-phase magnetically coupled resonant wireless power transfer system[C]//2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, USA, 2018: 1092-1097. [29] Ye Zhaohong, Sun Yue, Liu Xiufang, et al.Power transfer efficiency analysis for omnidirectional wireless power transfer system using three-phaseshifted drive[J]. Energies, 2018, 11(8): 2159. [30] Wang Dongyang, Zhu Yongxin, Guo Hongliang, et al.Enabling multi-angle wireless power transmission via magnetic resonant coupling[C]//7th International Conference on Computing and Convergence Technology (ICCCT), Seoul, South Korea, 2012: 1395-1400. [31] Jonah O, Georgakopoulos S, Tentzeris M.Orientation insensitive power transfer by magnetic resonance for mobile devices[C]//IEEE Wireless Power Transfer (WPT), Perugia, Italy, 2013: 5-8. [32] Liu Gongjun, Zhang Bo, Xiao Wenxun, et al.Omnidirectional wireless power transfer system based on rotary transmitting coil for household appliances[J]. Energies, 2018, 11(4): 878. [33] Liu Funxin, Yang Yong, Jiang Dan, et al.Modeling and optimization of magnetically coupled resonant wireless power transfer system with varying spatial scales[J]. IEEE Transactions on Power Electronic, 2016, 32(4): 3240-3250. [34] 林为干, 符果行, 邬琳若, 等. 电磁场理论[M]. 北京: 人民邮电出版社, 1996. [35] Ha-Van N, Seo C.Analytical and experimental investigations of omnidirectional wireless power transfer using a cubic transmitter[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1358-1366. [36] Luo Bin, Zhong Chenming, Ning Feng, et al.Three dimensional multidirectional inductance coil owning environmental conformal feature for wireless power transfer[J]. IEICE Electronics Express, 2015, 12(24): 1-9. [37] Kuo R, Riehl P, Satyamoorthy A, et al.A 3D resonant wireless charger for a wearable device and a mobile phone[C]//2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, USA, 2015: 1-3. [38] Kamotesov S, Lombard P, Semet V, et al.Omnidirectional inductive wireless charging of a 3D receiver cube inside a box[C]//2018 IEEE Wireless Power Transfer Conference (WPTC), Montreal, Canada, 2018: 1-4. [39] Kuo R, Riehl P, Lin J.3-D wireless charging system with flexible receiver coil alignment[C]//2016 IEEE Wireless Power Transfer Conference (WPTC), Aveiro, Portugal, 2016: 1-4. [40] Feng Junjie, Li Qiang, Lee Fred C.Coil and circuit design of omnidirectional wireless power transfer system for portable device application[C]//2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, USA, 2018: 914-920. [41] 黄松涛, 张伟, 张鹏飞, 等. 基于亥姆霍兹线圈的大尺寸均匀电磁场模拟[J]. 北京航空航天大学学报, 2015, 41(2): 203-208. Huang Songtao, Zhang Wei, Zhang Pengfei, et al.Large scale uniform electromagnetic field simulation based on Helmholtz coil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2): 203-208. [42] Zhang Wei, Zhang Tengyuan, Guo Qiuquan, et al.High-efficiency wireless power transfer system for 3D, unstationary free-positioning and multi-object charging[J]. IET Electric Power Applications, 2018, 12(5): 658-665. [43] Chabalko M J, Sample A P.Three-dimensional charging via multimode resonant cavity enabled wireless power transfer[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6163-6173. [44] Chabalko M J, Sample A P.Resonant cavity mode enabled wireless power transfer[J]. Applied Physics Letters, 2014, 105(24): 243902. [45] Shahmohammadi M, Chabalko M J, Sample A P.Circuit model for resonant cavity mode enabled wireless power transfer[C]//46th European Microwave Conference (EuMC), London, UK, 2016: 747-750. [46] Chabalko M J, Shahmohammadi M, Sample A P.Quasistatic cavity resonance for ubiquitous wireless power transfer[J]. PloS ONE, 2017, 12(2): e0169045. [47] Clerckx B, Zhang Rui, Schober R, et al.Fundamentals of wireless information and power transfer: from RF energy harvester models to signal and system designs[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(1): 4-33. [48] Chen Xiaoming, Derrick Wing Kwan Ng, Chen Hsiao-Hwa. Secrecy wireless information and power transfer: challenges and opportunities[J]. IEEE Wireless Communications, 2016, 23(2): 54-61. [49] Zhang Xu, Grajal J, Vazquez-Roy J L, et al. Twodimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting[J]. Nature, 2019, 566(7744): 368-372. [50] Aldhaher S, Yates D C, Mitcheson P D.Loadindependent class E/EF inverters and rectifiers for MHz-switching applications[J]. IEEE Transactions on Power Electronics, 2018, 33(10): 8270-8287. [51] Zhou Junjie, Luo Bin, Zhang Xiaoxiong, et al.Extendible load-isolation wireless charging platform for multi-receiver applications[J]. IET Power Electronics, 2017, 10(1): 134-142. [52] Peng Cheng, Chen Zhizhang, Liu Zhu, et al.On the load-independence of a multi-receiver wireless power transfer system[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(8): 563-565. [53] Liu Fuxin, Yang Yong, Ding Ze, et al.A multifrequency superposition methodology to achieve high efficiency and targeted power distribution for a multiload MCR WPT system[J]. IEEE Transactions on Power Electronics, 2017, 33(10): 9005-9016. [54] Kim Y J, Ha D, Chappell W J, et al.Selective wireless power transfer for smart power distribution in a miniature-sized multiple-receiver system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3): 1853-1862. [55] Yin He, Fu Minfan, Liu Ming, et al.Autonomous power control in a reconfigurable 6.78MHz multiplereceiver wireless charging system[J]. IEEE Transactions on Industrial Electronics, 2017, 65(8): 6177-6187. [56] Keramatnejad K, Li Dawei, Golgir H R, et al.Multi-walled carbon nanotube-coated spiral coils for loss reduction in wireless power transfer systems[J]. Carbon, 2018, 139: 695-699. [57] 聂新毅, 王豫, 王秀芳, 等. 基于超导中继线圈的磁耦合谐振式无线传输系统的传输效率分析[J]. 低温物理学报, 2017, 39(2): 32-37. Nie Xinyi, Wang Yu, Wang Xiufang, et al.Analysis of efficiency of wireless power transfer system via strongly coupled magnetic resonance with superconducting resonance coil[J]. Chinese Journal of Low Temperature Physics, 2017, 39(2): 32-37. [58] 李云辉, 陈永强, 冯团辉, 等. 基于美特材料中电磁隧穿效应的无线电能传输技术[J]. 电工技术学报, 2016, 31(4): 7-12. Li Yunhui, Chen Yongqiang, Feng Tuanhui, et al.Metamaterial-based electromagnetic tunneling effect for wireless energy transfer[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 7-12. [59] 张波, 疏许健, 吴理豪, 等. 无线电能传输技术亟待解决的问题及对策[J]. 电力系统自动化, 2019, 43(18): 1-12. Zhang Bo, Shu Xujian, Wu Lihao, et al.Problems of wireless power transmission technology urgent to be solved and corresponding countermeasures[J]. Automation of Electric Power Systems, 2019, 43(18): 1-12. [60] Zhou Jiali, Zhang Bo, Xiao Wenxun, et al.Nonlinear parity-time-symmetric model for constant efficiency wireless power transfer: application to a drone-inflight wireless charging platform[J]. IEEE Transactions on Industrial Electronics, 2018, 66(5): 4097-4107.