Analysis of Resonance Degradation Problem of Wide-Band Frequency Harmonics and Its Influence on Harmonic Standards
Zhou Ke1, Tu Chunming2, Xie Weijie2, Xiao Fan2
1. Electric Power Research Institute of Guangxi Power Grid Nanning 530023 China; 2. National Electric Power Conversion and Control Engineering Technology Research Center Hunan University Changsha 410082 China
Abstract:With the development of smart grid and new energy generation, the number of power electronic devices in power grid is constantly increasing, which makes the harmonic characteristics of power grid become wide-band. The harmonics will be boosted by the distribution capacitance in long distance HV transmission lines, and lead to a serious harmonic problem. In this paper, a wide-band frequency transmission line model considering the influence of distributed capacitance is established, and the internal mechanism of harmonic resonance degradation is studied. Through theoretical analysis and measurement for an actual line, the correctness of the resonance deterioration analysis method which proposed in this paper is verified. A comparative study is made between the GB and the international electrotechnical commission (IEC) standard. It is found that the existing standards cannot fully cover the harmonic problems with new characteristics. This paper can provide a theoretical reference for standard optimization.
周柯, 涂春鸣, 谢伟杰, 肖凡. 宽频域谐波谐振劣化问题及其对谐波标准的影响分析[J]. 电工技术学报, 2018, 33(zk2): 567-576.
Zhou Ke, Tu Chunming, Xie Weijie, Xiao Fan. Analysis of Resonance Degradation Problem of Wide-Band Frequency Harmonics and Its Influence on Harmonic Standards. Transactions of China Electrotechnical Society, 2018, 33(zk2): 567-576.
[1] Delfino F, Procopio R, Rossi M.High-frequency EHV/HV autotransformer model identification from LEMP test data[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 714-724. [2] Badrzadeh B, Gustavsen B.High-frequency modeling and simulation of wind turbine transformer with doubly fed asynchronous generator[J]. IEEE Transa- ctions on Power Delivery, 2012, 27(2): 746-756. [3] 解绍锋, 李群湛, 赵丽平. 谐波国家标准有关问题的探讨[J] . 电网技术, 2006, 30(13): 94-97. Xie Shaofeng, Li Qunzhan, Zhao Liping.Some discussion of state standard of harmonics[J]. Power System Technology, 2006, 30(13): 94-97. [4] 胡雪峰, 王璐, 龚春英, 等. 可再生能源并网发电馈网电流中的谐波分析及其抑制策略[J]. 中国电机工程学报, 2010, 30(增刊1): 167-170. Hu Xuefeng, Wang Lu, Gong Chunying, et al.Harmonic analysis and suppression strategies of grid current for renewable energy grid integration system[J]. Proceedings of the CSEE, 2010, 30(S1): 167-170. [5] Yong J, Chen L, Nassif A B, et al.A frequency- domain harmonic model for compact fluorescent lamps[J]. IEEE Transactions on Power Delivery, 2010, 25(2): 1182-1189. [6] Abdel-Akher M, Nor K M, Rashid A H A. Improved three-phase power-flow methods using sequence components[J]. IEEE Transactions on Power Systems, 2005, 20(3): 1389-1397. [7] 王佳佳, 周念成, 王强钢, 等. 电网电压不平衡下串联型12脉波整流装置的频域谐波建模[J] . 电工技术学报, 2015, 30(5): 69-78. Wang Jiajia, Zhou Niancheng, Wang Qianggang, et al.Frequency-domain harmonic modeling of the series 12-pulse rectifier under unbalanced voltage con- dition[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 69-78. [8] 卢恩, 张步涵, 龚世缨. 电力系统谐波潮流的一种解耦算法[J]. 电网技术, 2003, 27(2): 34-36. Lu En, Zhang Buhan, Gong Shiying.A decoupled algorithm for power system harmonic flows[J]. Power System Technology, 2003, 27(2): 34-36. [9] 郑伟杰, 孙媛媛, 徐文远. 应用非线性元件耦合矩阵模型的谐波潮流算法[J]. 中国电机工程学报, 2008, 28(10): 117-122. Zheng Weijie, Sun Yuanyuan, Xu Wenyuan.Harmonic power flow calculation using linearly coupled admittance matrix model for nonlinear elements[J]. Proceedings of the CSEE, 2008, 28(10): 117-122. [10] 史丽萍, 谢强, 马晓伟. 基于五项MSD窗三谱线插值的高精度谐波分析算法[J]. 电力系统保护与控制, 2017, 45(7): 108-113. Shi Liping, Xie Qiang, Ma Xiaowei.High accuracy analysis of harmonic algorithm based on 5-term maximum-sidelobe-decay window and triple-spectrum- line interpolation[J]. Power System Protection and Control, 2017, 45(7): 108-113. [11] 曾喆昭, 文卉, 王耀南. 一种高精度的电力系统谐波智能分析方法[J]. 中国电机工程学报, 2006, 26(10): 23-27. Zeng Zhezhao, Wen Hui, Wang Yaonan.An approach with high accuracy for intelligent analysis of power system harmonics[J]. Proceedings of the CSEE, 2006, 26(10): 23-27. [12] 王保帅, 肖霞. 一种用于谐波分析的高精度多谱线插值算法[J]. 电工技术学报, 2018, 33(3): 553-562. Wang Baoshuai, Xiao Xia.A high accuracy multi- spectrum-line interpolation algorithm for harmonic analysis[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 553-562. [13] 刘敏, 周晓霞, 陈慧春, 等. 采用三相不可控整流充电机的电动汽车充电站谐波放大效应分析与计算[J]. 电力系统保护与控制, 2016, 44(4): 36-43. Liu Min, Zhou Xiaoxia, Chen Huichun, et al.Analysis and calculation on harmonic amplification effect of electric vehicle charging station using three-phase uncontrolled rectification charger[J]. Power System Protection and Control, 2016, 44(4): 36-43. [14] Xu W, Liu Xian, Liu Yilu.An investigation on the validity of power-direction method for harmonic source determination[J]. IEEE Transactions on Power Delivery, 2003, 18(1): 214-219. [15] Chen Chaoying, Liu Xiuling, Koval D, et al.Critical impedance method-a new detecting harmonic sources method in distribution systems[J]. IEEE Transactions on Power Delivery, 2004, 19(1): 288-297. [16] 许德志, 汪飞, 阮毅, 等. 并网接口滤波器拓扑结构推演与分析[J]. 电工技术学报, 2015, 30(4): 15-25. Xu Dezhi, Wang Fei, Ruan Yi, et al.Topology deduction and analysis of grid-interfacing filters[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 15-25. [17] 孙曙光, 庞毅, 王景芹, 等. 一种基于新型小波阈值去噪预处理的EEMD谐波检测方法[J]. 电力系统保护与控制, 2016, 44(2): 42-48. Sun Shuguang, Pang Yi, Wang Jingqin, et al.EEMD harmonic detection method based on the new wavelet threshold denoising pretreatment[J]. Power System Protection and Control, 2016, 44(2): 42-48. [18] 冯伟, 孙凯, 关雅娟, 等. 基于分层控制的微电网并网谐波电流主动抑制控制策略[J]. 电工技术学报, 2018, 33(6): 1400-1409. Feng Wei, Sun Kai, Guan Yajuan, et al.An active harmonic grid-connecting current suppression strategy for hierarchical control based microgrid[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(6): 1400-1409. [19] Bhattacharya A, Chakraborty C.A shunt active power filter with enhanced performance using ANN-based predictive and adaptive controllers[J]. IEEE Transa- ctions on Industrial Electronics, 2011, 58(2): 421-428. [20] 帅智康, 罗安, 涂春鸣, 等. 注入式混合型有源电力滤波器在工程中的应用[J]. 电工技术学报, 2008, 23(5): 128-136. Shuai Zhikang, Luo An, Tu Chunming, et al.Application of hybrid active power filter with injection circuit[J]. Transactions of China Electro- technical Society, 2008, 23(5): 128-136. [21] 李博, 李欣. 并联有源电力滤波器解耦控制研究综述[J]. 电力系统保护与控制, 2017, 45(17): 164-170. Li Bo, Li Xin.A survey on shunt active power filter decoupling control[J]. Power System Protection and Control, 2017, 45(17): 164-170. [22] 周林, 夏雪, 万蕴杰, 等. 基于小波变换的谐波测量方法综述[J]. 电工技术学报, 2006, 21(9): 67-74. Zhou Lin, Xia Xue, Wan Yunjie, et al.Harmonic detection based on wavelet transform[J]. Transactions of China Electrotechnical Society, 2006, 21(9): 67-74. [23] 肖建平, 李生虎, 吴可汗, 等. 一种新的基于神经网络的电力系统谐波检测方法研究[J]. 电工技术学报, 2013, 28(增刊2): 345-348. Xiao Jianping, Li Shenghu, Wu Kehan, et al.A novel approach of harmonic detection in power system based on neural network[J]. Transactions of China Electrotechnical Society, 2013, 28(S2): 345-348. [24] 房国志, 杨超, 赵洪. 基于FFT和小波包变换的电力系统谐波检测方法[J]. 电力系统保护与控制, 2012, 40(5): 75-79. Fang Guozhi, Yang Chao, Zhao Hong.Detection of harmonic in power system based on FFT and wavelet packet[J]. Power System Protection and Control, 2012, 40(5): 75-79. [25] Tang Y, Loh P C, Wang P, et al.Generalized design of high performance shunt active power filter with output LCL filter[J]. IEEE Transactions on Industrial Electronics, 2011, 59(3): 1443-1452. [26] Luo An, Shuai Zhikang, Zhu Wenji, et al.Combined system for harmonic suppression and reactive power compensation[J]. IEEE Transactions on Industrial Electronics, 2009, 56(2): 418-428. [27] Shuai Zhikang, Luo An, Shen Z J, et al.A dynamic hybrid var compensator and a two-level collaborative optimization compensation method[J]. IEEE Transa- ctions on Power Electronics, 2009, 24(9): 2091-2100. [28] 水利电力部. 电力系统谐波管理暂行规定SD126- 84[Z]. 北京: 水利电力出版社, 1985. [29] GB/T 14549—1993, 电能质量公用电网谐波[S]. 国家技术监督局, 北京, 1993. [30] IEC/TR 61000-3-6, Electromagnetic compatibility (EMC)-Part 3-6: Limits-Assessment of emission limits for the connection of distorting installations to MV, HV and EHV power systems[S]. IEC, 2008.