Abstract:The ideal proportional complex integral (PCI) controller can generate an infinite gain at the resonant frequency but no gains at other frequencies, which can eliminate the steady-state error completely. However, the infinite amplitude may cause stability problems. In this paper, a quasi-proportional complex integral (QPCI) controller is presented for eliminating the steady-state error in the stationary frame. The QPCI controller uses the cross-axis to produce resonance with each other, which achieves the tracking of sine signals. Meanwhile, introducing the frequency bandwidth ωc can both eliminate the steady state error and ensure the system stability. In order to deeply understand the principle operation of the controller and the impacts of parameters, this paper structures a physical circuit model. The theoretical analysis, simulations and experiments are carried out to compare the performance of the PCI, quasi PCI and the traditional quasi PR with three-phase grid connected inverter.
张纯江, 郭忠南, 骈帅华, 王晓寰. 逆变器系统中准PCI控制器及其物理模型分析[J]. 电工技术学报, 2017, 32(24): 115-125.
Zhang Chunjiang, Guo Zhongnan, Pian Shuaihua, Wang Xiaohuan. Analysis of Quasi-Proportional Complex Integral Controller and Its Physical Model in Inverter System. Transactions of China Electrotechnical Society, 2017, 32(24): 115-125.
[1] Wang Chengshan, Yang Xianshen, Wu Zhen, et al. A highly integrated and reconfigurable microgrid testbed with hybrid distributed energy sources[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 451-459. [2] Liu Shichao, Wang Xiaoyu, Liu Xiaoping, et al. Impact of communication delays on secondary frequency control in an islanded microgrid[J]. IEEE Transactions on Power Electronics, 2015, 62(4): 2021-2031. [3] Joohyung Lee, Guo Jun, Jun Kyun Cho. Distributed energy trading in microgrids: a game-theoretic model and its equilibrium analysis[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2): 3524-3533. [4] Zhu Yixin, Zhuo Fang, Wang Feng, et al. A virtual impedance optimization method for reactive power sharing in networked microgrid[J]. IEEE Transa- ctions on Power Electronics, 2015, 31(4): 2890-2894. [5] 柴秀慧, 张纯江, 郭忠南, 等. 三相三线和四线三电平变换器中点电位控制研究[J]. 燕山大学报, 2016, 40(1): 81-87. Chai Xiuhui, Zhang Chunjiang, Guo Zhongnan, et al. Neutral-point potential control method of three-phase three-wire and four-wire NPC three-level con- verter[J]. Journal of Yan Shan University, 2016, 40(1): 81-87. [6] Claudio Alberto Busada, Sebastián Gómez Jorge, Andres E Leon, et al. Current controller based on reduced order generalized integrators for distributed generation systems[J]. IEEE Transactions on Indu- strial Electronics, 2012, 59(7): 2898-2909. [7] 庄超, 叶永强, 赵强松, 等. 基于分裂电容法的LCL并逆变器控制策略分析与改进[J]. 电工技术学报, 2015, 30(16): 85-93. Zhuang Chao, Ye Yongqiang, Zhao Qiangsong, et al. Analysis and improvement of the control strategy of LCL grid-connected inverter based on split- capacitor[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 85-93. [8] 张国月, 秦梦珠, 齐冬莲, 等. 三相光伏并网发电系统THD及DCI优化方法研究[J]. 电工技术学报, 2015, 30(16): 238-245. Zhang Guoyue, Qin Mengzhu, Qi Donglian, et al. Research on optimization method of THD and DCI in three-phase grid-connected PV generation system[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 238-245. [9] 郭小强, 邬伟扬, 赵清林, 等. 三相并网逆变器比例复数积分电流控制技术[J]. 中国电机工程学报, 2009, 29(15): 8-14. Guo Xiaoqiang, Wu Weiyang, Zhao Qinglin, et al. Current regulation for three-phase grid-connected inverters based on proportional complex integral control[J]. Proceedings of the CSEE, 2009, 29(15): 8-14. [10] 郭小强, 贾晓瑜, 王怀宝, 等. 三相并网逆变器静止坐标系零稳态误差电流控制分析及在线切换控制研究[J]. 电工技术学报, 2015, 30(4): 8-14. Guo Xiaoqiang, Jia Xiaoyu, Wang Huaibao, et al. Analysis and online transfer of stationary frame zero steady-state error current control for three-phase grid-connected inverters[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 8-14. [11] 赵新, 金新民, 周飞, 等. 基于比例积分-降阶谐振调节器的并网逆变器不平衡控制[J]. 中国电机工程学报, 2013, 33(15): 38-44. Zhao Xin, Jin Xinmin, Zhou Fei, et al. Unbalanced control of grid-connected inverters based on pro- portion integral and reduced order resonant con- trollers[J]. Proceedings of the CSEE, 2013, 33(15): 38-44. [12] Busada C A, Lcon A E. Current controller based on reduced order generalized integrators for distributed generation systems[J]. IEEE Transactions on Indu- strial Electronics, 2012, 5(7): 2898-2909. [13] 陈新, 韦徵, 胡雪峰, 等. 三相并网逆变器LCL滤波器的研究及新型有源阻尼控制[J]. 电工技术学报, 2014, 29(6): 71-79. Chen Xin, Wei Zheng, Hu Xuefeng, et al. Research on LCL filter in three-phase grid-connected inverter and novel active damping control strategy[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 71-79. [14] 杭丽君, 李宾, 黄龙, 等. 一种可再生能源并网逆变器的多谐振PR电流控制技术[J]. 中国电机工程学报, 2012, 32(12): 51-58. Hang Lijun, Li Bin, Huang Long, et al. A multi- resonant PR current controller for grid-connected inverters in renewable energy systems[J]. Pro- ceedings of the CSEE, 2012, 32(12): 51-58. [15] 鲍陈磊, 阮新波, 王学华, 等. 基于PI调节器和电容电流反馈有源阻尼的LCL型并网逆变器闭环参数设计[J]. 中国电机工程学报, 2012, 32(25): 133-142. Bao Chenlei, Ruan Xinbo, Wang Xuehua. Design of grid-connected inverters with LCL filter based on pi regulator and capacitor current feedback active damping[J]. Proceedings of the CSEE, 2012, 32(25): 133-142. [16] Fukuda S, Imamura R. Application of a sinusoidal internal model to current control of three-phase utility-interface converters[J]. IEEE Transactions on Industrial Electronics, 2005, 52(2): 420-426. [17] Alaoui A, Mohamad A. Novel approach to analog-to- digital transforms[J]. IEEE Transactions on Circuits and Systems, 2007, 54(2): 338-350. [18] Erickson W, Maksimovic D. Fundamentals of power- electronics[M]. Norwell, MA: Kluwer, 2001.