Inertia Control of the Grid Connected Doubly Fed Induction Generator Based Wind Farm with Drive-Train Torsion Active Damping
Xi Xinze1, 2, Geng Hua1, Yang Geng1
1. Department of Automation Tsinghua University Beijing 100084 China; 2. Electric Power Research Institute of Yunnan Power Co. Ltd Kunming 650217 China
Abstract:The power system equivalent inertia and the frequency stability decline with the increasing penetration level of wind generation. To remedy this situation, many countries have put forward grid codes which require large-scale wind farms to participate in the system frequency regulation and provide inertial responses as synchronous generators do. Through time-domain simulations and additional eigenvalue analysis, the impacts of wind farm inertia control on the wind generation system and on the power system operating characteristics have been studied. The traditional wind farm inertia control is beneficial to the system frequency stability. However, the simulation results indicate that the inertia control reduces damping of the drive-train torsional mode, which may lead to speed oscillation instability. To solve this problem, the inertia control involving active damping for the drive-train torsional oscillation is proposed. The proposed control facilitates the wind farm to fulfill the grid code requirement regarding the inertia control and suppresses the drive-train torsional oscillation. The simulation results validate the effectiveness of the proposed control.
奚鑫泽, 耿华, 杨耕. 含主动轴系扭振阻尼的并网双馈风电场惯量控制方法[J]. 电工技术学报, 2017, 32(6): 136-144.
Xi Xinze, Geng Hua, Yang Geng. Inertia Control of the Grid Connected Doubly Fed Induction Generator Based Wind Farm with Drive-Train Torsion Active Damping. Transactions of China Electrotechnical Society, 2017, 32(6): 136-144.
[1] 郝正航, 余贻鑫. 双馈风电机组机电耦合与轴系稳定的分析与辨识[J]. 电工技术学报, 2011, 26(3): 134-139. Hao Zhenghang, Yu Yixin. Analysis and identi- fication for electromechanical coupling and shaft stability of doubly-fed induction generator[J]. Transactions of China Electrotechnical Society, 2011, 26(3): 134-139. [2] Zhe C, Guerrero J M, Blaabjerg F. A review of the state of the art of power electronics for wind turbines[J]. IEEE Transactions on Power Electronics, 2009, 24(8): 1859-1875. [3] 张子泳, 胡志坚, 刘宇凯. 计及广域信号时变时滞影响的大型双馈风力发电系统附加鲁棒阻尼控制[J]. 电工技术学报, 2014, 29(4): 246-255. Zhang Ziyong, Hu Zhijian, Liu Yukai. Additional robust damping control of large scale DFIG-based wind power generation system with wide-area signals’ time-varying delay influence[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 246-255. [4] 王毅, 张祥宇, 李和明, 等. 永磁直驱风电机组对系统功率振荡的阻尼控制[J]. 电工技术学报, 2012, 27(12): 162-171. Wang Yi, Zhang Xiangyu, Li Heming, et al. Damping control of PMSG-based wind turbines for power system oscillations[J]. Transactions of China Elec- trotechnical Society, 2012, 27(12): 162-171. [5] 谭谨, 王晓茹, 李龙源. 含大规模风电的电力系统小扰动稳定研究综述[J]. 电力系统保护与控制, 2014, 42(3): 15-23. Tan Jin, Wang Xiaoru, Li Longyuan. A survey on small signal stability analysis of power systems with wind power integration[J]. Power System Protection and Control, 2014, 42(3): 15-23. [6] 张子泳, 胡志坚, 李勇汇, 等. 大型双馈风力发电系统小信号动态建模及附加阻尼控制器设计[J]. 电力系统保护与控制, 2011, 39(18): 127-133. Zhang Ziyong, Hu Zhijian, Li Yonghui, et al. Small signal dynamic modelling and additionaller damping controller designing for large wind generation system based on DFIG[J]. Power System Protection and Control, 2011, 39(18): 127-133. [7] Gautam D, Goel L, Ayyanar R, et al. Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems[J]. IEEE Transactions on Power Systems, 2011, 26(1): 214-224. [8] Lalor G, Ritchie J, Rourke S, et al. Dynamic frequency control with increasing wind generation[C]// IEEE Power Engineering Society General Meeting, Denver, CO, 2004: 1717-1720. [9] Saffarian A, Sanaye Pasand M. Enhancement of power system stability using adaptive combinational load shedding methods[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1010-1020. [10] Ning X, Jiang H, Zhu X. An improved under frequency load shedding scheme in multi-machine power system based on the rate of change of frequency[C]//International Conference on Advanced Power System Automation and Protection (APAP), Beijing, 2011: 775-780. [11] Pelletier M A, Phethean M E, Nutt S. Grid code requirements for artificial inertia control systems in the New Zealand power system[C]//IEEE Power and Energy Society General Meeting, San Diego, CA, 2012: 1-7. [12] Technical requirement for the connection of genera- tion facilities to the Hydro-Quebec transmission system: supplementary requirements for wind generation[S]. Montreal, Quebec, Canada, 2003, Revised 2005. [13] Ekanayake J, Jenkins N. Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency[J]. IEEE Transactions on Energy Conversion, 2004, 19(4): 800-802. [14] Morren J, De Haan S W H, Kling W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power Systems, 2006, 21(1): 433-434. [15] Lalor G, Mullane A, O'Malley M. Frequency control and wind turbine technologies[J]. IEEE Transactions on Power Systems, 2005, 20(4): 1905-1913. [16] Geng H, Xu D, Wu B, et al. Comparison of oscillation damping capability in three power control strategies for PMSG-based WECS[J]. Wind Energy, 2011, 14(3): 389-406. [17] Geng H, Xu D, Wu B, et al. Active damping for PMSG-based WECS with DC-link current estima- tion[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1110-1119. [18] 张琛, 李征, 高强, 等. 双馈风电机组的不同控制策略对轴系振荡的阻尼作用[J]. 中国电机工程学报, 2013, 33(27): 135-144. Zhang Chen, Li Zheng, Gao Qiang, et al. Damping effects on torsional oscillation of DFIG drive-chain using different control strategies[J]. Proceedings of the CSEE, 2013, 33(27): 135-144. [19] 姚兴佳, 王晓东, 单光坤, 等. 双馈风电机组传动系统扭振抑制自抗扰控制[J]. 电工技术学报, 2012, 27(1): 136-141. Yao Xingjia, Wang Xiaodong, Shan Guangkun, et al. Torque vibration active disturbance rejection control of double-fed wind turbine drive train[J]. Transa- ctions of China Electrotechnical Society, 2012, 27(1): 136-141. [20] 邓秋玲, 黄守道, 姚建刚, 等. 直驱风电系统新型变流控制策略[J]. 电工技术学报, 2012, 27(7): 227-234. Deng Qiuling, Huang Shoudao, Yao Jiangang, et al. A new converter control strategy in direct drive wind generation system[J]. Transactions of China Elec- trotechnical Society, 2012, 27(7): 227-234. [21] 赵祖熠, 刘李勃, 解大, 等. 基于阻尼器的双馈风力发电系统扭振抑制策略[J]. 电力系统保护与控制, 2016, 44(3): 8-14. Zhao Zuyi, Liu Libo, Xie Da. A novel torsional vibration damping method for a DFIG-based system[J]. Power System Protection and Control, 2016, 44(3): 8-14. [22] Xing Z, Liang L, Guo H, et al. Damping control study of the drive train of DFIG wind turbine[C]// International Conference on Energy and Environment Technology (ICEET), 2009: 576-579. [23] Girsang I P, Dhupia J S, Muljadi E, et al. Modeling and control to mitigate resonant load in variable- speed wind turbine drivetrain[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1(4): 277-286. [24] Klein M, Rogers G J, Kundur P. A fundamental study of inter-area oscillations in power systems[J]. IEEE Transactions on Power Systems, 1991, 6(3): 914-921. [25] Kamwa I.Performance of three PSS for interarea oscillations[EB/OL]. http://www.mathworks.cn/products/ simpower/model-examples.html?file=/products/demos/shipping/powersys/power_PSS.html [26] Holdsworth L, Ekanayake J B, Jenkins N. Power system frequency response from fixed speed and doubly fed induction generator-based wind turbines[J]. Wind Energy, 2004, 7(1): 21-35. [27] Ping-Kwan K, Pei L, Banakar H, et al. Kinetic energy of wind-turbine generators for system frequency support[J]. IEEE Transactions on Power Systems, 2009, 24(1): 279-287. [28] MathWorks. Simulink control designTM 3-user’s guide[R]. 2010.