Abstract:The colored Gaussian noises will affect the measured signals in wide area monitoring systems. Thus, a new identification method for low frequency oscillation modes based on FOMC-HTLS-Adaline was proposed. Firstly, with the advantages of blindness to Gaussian noise, four order mixed cumulants (FOMC) sequence replaced measure signals to identify low frequency oscillation modes. Secondly, Hankel total least squares (HTLS) and Adaline artificial neural network (ANN) estimated the frequency, attenuation factor, amplitude and phase of low frequency oscillation. The introduction of Adaline ANN solves the problem that amplitude and phase of modes are difficult to estimate after FOMC process, and reduces error accumulation of matrix calculation and improves the identification accuracy. The 4-machine two-area power system and measured phasor measurements units (PMU) both indicate that FOMC-HTLS-Adaline method accurately identifies low frequency oscillation modes under the circumstances with colored Gaussian noises.
王臻, 李承, 林志芳, 李惠章. 考虑高斯有色噪声的FOMC-HTLS-Adaline算法在低频振荡模式辨识中的研究[J]. 电工技术学报, 2017, 32(6): 21-30.
Wang Zhen, Li Cheng, Lin Zhifang, Li Huizhang. Research on Low Frequency Oscillation Mode Identification Based on FOMC-HTLS-Adaline Algorithm Considering Colored Gaussian Noises. Transactions of China Electrotechnical Society, 2017, 32(6): 21-30.
[1] 陈恩泽, 刘涤尘, 廖清芬, 等. 多重扰动下的跨区电网低频振荡研究[J]. 电工技术学报, 2014, 29(2): 290-296. Chen Enze, Liu Dichen, Liao Qingfen, et al. Research on low frequency oscillation of interconnected power grid based on multiple disturbances[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 290- 296. [2] 赵妍, 李志民, 李天云. 电力系统低频振荡监测的Duffing振子可停振动系统法[J]. 电工技术学报, 2015, 30(20): 159-167. Zhao Yan, Li Zhimin, Li Tianyun. Duffing oscillator order stopping oscillation system method for moni- toring of low-frequency oscillation in power system[J]. Transactions of China Electrotechnical Society, 2015, 30(20): 159-167. [3] 王娜娜, 刘涤尘, 廖清芬, 等. 基于EMD-TEO及信号能量分析法的主导低频振荡模式识别[J]. 电工技术学报, 2012, 27(6): 198-204. Wang Nana, Liu Dichen, Liao Qingfen, et al. Identi- fication of the dominant inertial mode based on EMD-TEO and signal energy method[J]. Transactions of China Electrotechnical Society, 2012, 27(6): 198-204. [4] 邱夕兆, 于占勋, 雷鸣, 等. 山东电网基于WAMS的低频振荡统计与评估[J]. 电力系统自动化, 2008, 32(6): 95-98. Qiu Xizhao, Yu Zhanxun, Lei Ming, et al. WAMS based statistics and assessment of low frequency oscillation in Shandong power grid[J]. Automation of Electric Power Systems, 2008, 32(6): 95-98. [5] Hauer J F, Demeure C J, Scharf L L. Initial results in Prony analysis of power system response signals[J]. IEEE Transactions on Power Systems, 1990, 5(1): 80-89. [6] 李安娜, 吴熙, 蒋平, 等. 基于形态滤波和Prony算法的低频振荡模式辨识的研究[J]. 电力系统保护与控制, 2015, 43(3): 137-142. Li Anna, Wu Xi, Jiang Ping, et al. Research on identifying low frequency oscillation modes based on morphological filtering theory and Prony algo- rithm[J]. Power System Protection and Control, 2015, 43(3): 137-142. [7] 吴超, 陆超, 韩英铎, 等. 基于类噪声信号和ARMA-P方法的振荡模态辨识[J]. 电力系统自动化, 2010, 34(6): 1-6. Wu Chao, Lu Chao, Han Yingduo, et al. Identi- fication of mode shape based on ambient signals and ARMA-P method[J]. Automation of Electric Power Systems, 2010, 34(6): 1-6. [8] Wies R W, Pierre J W, Trudnowski D J. Use of ARMA block processing for estimating stationary low frequency electromechanical modes of power systems[J]. IEEE Transations on Power Systems, 2003, 18(1): 167-173. [9] 邓集祥, 欧小高, 姚天亮. 基于小波能量系数的主导低频振荡模式检测[J]. 电工技术学报, 2009, 24(8): 141-146. Deng Jixiang, Ou Xiaogao, Yao Tianliang. Detection of the dominant inertial modes based on wavelet energy coefficient[J]. Transactions of China Electro- technical Society, 2009, 24(8): 141-146. [10] 李勋, 龚庆武, 贾晶晶, 等. 基于原子稀疏分解的低频振荡模态参数辨识方法[J]. 电工技术学报, 2012, 27(9): 124-133. Li Xun, Gong Qingwu, Jia Jingjing, et al. Atomic sparse decomposition based identification method for low-frequency oscillation modal parameters[J]. Transactions of China Electrotechnical Society, 2012, 27(9): 124-133. [11] Zeineldin H H, Abdel-Galil T, El-Saadany E F, et al. Islanding detection of grid connected distributed generators using TLS-ESPRIT[J]. Electric Power Systems Research, 2007, 77(2): 155-162. [12] 赵妍, 李志民, 李天云. 低频振荡模态参数辨识的共振稀疏分解SSI分析方法[J]. 电工技术学报, 2016, 31(2): 136-144. Zhao Yan, Li Zhimin, Li Tianyun. Low frequency oscillation modal parameter identification using resonance-based sparse signal decomposition and SSI method[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 136-144. [13] 张亮, 张新燕, 王维庆. 基于改进多信号矩阵束算法的电力系统低频振荡识别[J]. 电力系统保护与控制, 2013, 41(13): 26-30. Zhang Liang, Zhang Xinyan, Wang Weiqing. Identi- fication of low-frequency oscillations based on improved multi-signal matrix pencil algorithm[J]. Power System Protection and Control, 2013, 41(13): 26-30. [14] 刘尹, 罗建, 陈刚, 等. 基于解相关LMS自适应滤波算法的低频振荡模式在线辨识[J]. 电力系统保护与控制, 2012, 40(12): 72-76. Liu Yin, Luo Jian, Chen Gang, et al. On-line identification of low frequency oscillation modes based on de-correlation LMS adaptive filtering algorithm[J]. Power System Protection and Control, 2012, 40(12): 72-76. [15] Tripathy P, Srivastava S C, Singh S N. A modified TLS-ESPRIT-based method for low-frequency mode identification in power systems utilizing synchro- phasor measurements[J]. IEEE Transactions on Power Systems, 2011, 26(2): 719-727. [16] 胡楠, 李兴源, 李宽, 等. 基于四阶混合平均累计量的矩阵束算法在低频振荡在线辨识中的应用[J]. 中国电机工程学报, 2013, 33(7): 53-60. Hu Nan, Li Xingyuan, Li Kuan, et al. A modified matrix pencil method based on fourth-order mixed mean cumulant for low frequency oscillation mode on-line identification[J]. Proceedings of the CSEE, 2013, 33(7): 53-60. [17] 侯王宾, 刘天琪, 李兴源. 基于自适应神经模糊滤波的低频振荡Prony分析[J]. 电网技术, 2010, 34(6): 53-58. Hou Wangbin, Liu Tianqi, Li Xingyuan. Prony analysis of low frequency oscillations based on adaptive neural-fuzzy filtering[J]. Power System Technology, 2010, 34(6): 53-58. [18] 高勋章. 基于高阶统计量的雷达目标高分辨成像研究[D]. 长沙: 国防科学技术大学, 2004. [19] Anderson J M M, Giannakis G B, Swami A. Harmonic retrieval using higher order statistics: a deterministic formulation[J]. IEEE Transactions on Signal Processing, 1995, 43(8): 1880-1889. [20] Papadopoulos C K, Nikias C L. Parameter estimation of exponentially damped sinusoids using higher order statistics[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(8): 1424-1436. [21] Papy J M, De Lathauwer L, Van Huffel S. Common pole estimation in multi-channel exponential data modeling[J]. Signal Processing, 2006, 86(4): 846- 858. [22] 曾喆昭, 文卉, 王耀南. 一种高精度的电力系统谐波智能分析方法[J]. 中国电机工程学报, 2006, 26(10): 23-27. Zeng Zhezhao, Wen Hui, Wang Yaonan. An approach with high accuracy for intelligent analysis of power system harmonics[J]. Proceedings of the CSEE, 2006, 26(10): 23-27. [23] Kundur P. 电力系统稳定与控制[M]. 周孝信, 李兴源, 周波, 等译. 北京: 中国电力出版社, 2002. [24] 杨东俊, 丁坚勇, 周宏, 等. 基于WAMS量测数据的低频振荡机理分析[J]. 电力系统自动化, 2009, 33(23): 24-28. Yang Dongjun, Ding Jianyong, Zhou Hong, et al. Mechanism analysis of low-frequency oscillation based on WAMS measured data[J]. Automation of Electric Power Systems, 2009, 33(23): 24-28.