Abstract:A new detection method for three-phase voltage based on 3D-space normal vector is presented in this paper. This new method has some advantages such as quick detection, simple calculation and adaptability for unbalanced voltage. Simulation and experiment is given and the results show that the method has very good speed and accuracy for detection of unbalanced three-phase voltage.
卢远宏,郑琼林,马亮. 基于三维空间法向量的三相电压幅值检测[J]. 电工技术学报, 2015, 30(3): 155-164.
Lu Yuanhong,Zheng Qionglin,Ma Liang. Three-Phase Voltage Amplitude Detection Based on 3D Space Normal Vector. Transactions of China Electrotechnical Society, 2015, 30(3): 155-164.
[1] 张兴, 张龙云, 杨淑英, 等. 风力发电低电压穿越技术综述[J]. 电力系统及其自动化学报, 2008, 20(2): 1-7. Zhang Xing, Zhang Longyun, Yang Shuying, et al. Low voltage ride through technologies in wind turbine generation[J]. Proceedings of the CSU-EPSA, 2008, 20(2): 1-7. [2] IEEE P1547 Std., IEEE Standard for Distributed Resources Interconnected With Electric Power Systems [S]. [3] G83/1-1, Recommendations for the Connection of Small-scale Embedded Generators(Up to 16A per Phase) in Parallel with Public Low-Voltage Distribu- tion Networks[S]. [4] Din V Vde V 0126-1-1, Automatic disconnection device between a generator and a public low voltage grid[S]. [5] UL1741, Inverters, Converters, and Controllers for Use in Independent Power System[S]. [6] GB/T 19964-2005, 光伏发电站接入电力系统技术规定[S]. [7] 李康瑞, 杨洪耕. 基于S变换标准模板相似度的电压暂降分类[J]. 电工技术学报, 2010, 25(12): 139-153. Li Kangrui, Yang Honggeng. S-transform based classi- fication for voltage dips according to standard template similarity[J]. Transactions of China Electrotechnical Society, 2010, 25(12): 139-153. [8] Raj Naidoo, Pragasen Pillay. A new method of voltage sag and swell detection[J]. IEEE Transactions on Power Delivery, 2007, 22(2): 1056-1063. [9] 张庆超, 肖玉龙. 一种改进的电压暂降检测方法[J]. 电工技术学报, 2006, 21(2): 123-126. Zhang Qingchao, Xiao Yulong. An improved detection method of voltage sag[J]. Transactions of China Electrotechnical Society, 2006, 21(2): 123-126. [10] 胡书举, 李建林, 李梅. 风电系统实现LVRT的电网电压跌落检测方法[J]. 大功率变流技术, 2008, 6(6): 17-20. Hu Shuju, Li Jianlin, Li Mei. Voltage sag detection methods for wind power system LVRT[J]. High Power Converter Technology, 2008, 6(6): 17-20. [11] 鲁波涌, 黄文清. 结合小波变换和能量算子的电压暂降检测方法[J]. 电工技术学报, 2011, 26(5): 171-177. Lu Boyong, Huang Wenqing. Hybrid wavelet-energy operator method for voltage sag detection[J]. Transac- tions of China Electrotechnical Society, 2011, 26(5): 171-177. [12] 张波, 颜湘武, 王树岐. 基于dq变换的三相电压暂降生成方法[J]. 电工技术学报, 2011, 26(10): 55-61. Zhang Bo, Yan Xiangwu, Wang Shuqi. Method of three-phase voltage sag forming based on dq trans- formation[J]. Transactions of China Electrotechnical Society, 2011, 26(10): 55-61. [13] 克长宾, 李永丽. 动态电压恢复器的电压跌落综合补偿策略研究[J]. 电力系统保护与控制, 2012, 40(17): 94-99. Ke Changbin, Li Yongli. Study on voltage sags compensation strategy for dynamic voltage restorer[J]. Power System Protection and Control, 2012, 40(17): 94-99. [14] 刘海春, 徐立智, 谢少军. 基于周期相位的电压跌落检测方法[J]. 电工技术学报, 2009, 24(9): 186-190. Liu Haichun, Xu Lizhi, Xie Shaojun. Detection method of voltage sag based on period phase[J]. Transactions of China Electrotechnical Society, 2009, 24(9): 186-190. [15] 王智勇, 吴正国, 侯新国. 基于动态预测的DVR检测算法[J]. 电工技术学报, 2007, 22(1): 125-131. Wang Zhiyong, Wu Zhengguo, Hou Xinguo. A novel detection algorithm based on dynamic forecast for dynamic voltage restorer[J]. Transactions of China Electrotechnical Society, 2007, 22(1): 125-131. [16] 郝晓弘, 田江博, 陈伟, 等. 基于信息熵和数学形态学的电压跌落持续时间检测方法[J]. 电力系统保护与控制, 2012, 40(11): 30-41. Hao Xiaohong, Tian Jiangbo, Chen Wei, et al. Detection method of voltage sag duration based on information-entropy and mathematical morphology[J]. Power System Protection and Control, 2012, 40(11): 30-41. [17] 冯小明, 杨仁刚. 动态电压恢复器的形态学一一dq变换综合检测算法[J]. 中国电机工程学报, 2004, 24(11): 193-198. Feng Xiaoming, Yang Rengang. A novel integrated morphology-dq transformation detection algorithm for dynamic voltage restorer[J]. Proceedings of the CSEE, 2004, 24(11): 193-198. [18] 吴睿. 基于空间矢量控制的三相四桥臂逆变电源研究[D]. 南京:南京航空航天大学, 2006. [19] 曾伟, 郑建勇, 胡敏强, 等. 三相四桥臂逆变器的可变空间矢量控制策略研究[J]. 高压电器, 2006, 42(4): 247-252. Zeng Wei, Zheng Jianyong, Hu Minqiang, et al. Research of adaptive SVPWM control strategy in a three-phase four-leg inverter[J]. High Voltage Apparatus, 2006, 42(4): 247-252. [20] 吴玉杨. 基于三维空间矢量调制的三相四桥臂逆变器研究[D]. 安徽: 合肥工业大学, 2007. [21] 王晓刚, 谢运祥, 帅定新, 等. 四桥臂逆变器的快速三维SVPWM算法[J]. 华南理工大学学报(自然科学版), 2009, 37(7): 94-99. Wang Xiaogang, Xie Yunxiang, Shuai Dingxin, et al. Fast three-dimension SVPWM algorithm for four-leg inverter[J]. Journal of South China University of Technology, 2009, 37(7): 94-99. [22] 张晓勇, 王军, 李川, 等. 基于三维空间矢量中 γ 分量控制的三相四桥臂逆变器[J]. 电力自动化设备, 2010, 30(12): 70-87. Zhang Xiaoyong, Wang Jun, Li Chuan, et al. Three- phase four-leg inverter based on γ component control in three-dimensional space vector[J]. Electric Power Automation Equipment, 2010, 30(12):70-87. [23] 周娟, 吴漩, 蒋正友, 等. 四桥臂变流器新型三维空间矢量脉宽调制策略[J]. 中国电机工程学报, 2011, 31(33): 1-8. Zhou Juan, Wu Xuan, Jiang Zhengyou, et al. A novel 3D-SVPWM algorithm for four-leg converter[J]. Proceedings of the CSEE, 2011, 31(33): 1-8. [24] Serra J. Morphological filtering: An overview[J]. Signal Processing, 1994, 38(4): 3-11. [25] 赵昭, 刘利林, 张承学, 等. 形态学滤波器结构元素选取原则研究与分析[J]. 电力系统保护与控制, 2009, 37(14): 21-35. Zhao Zhao, Liu Lilin, Zhang Chengxue, et al. Research and analysis of morphological filter's structure element selection principle[J]. Power System Protection and Control, 2009, 37(14): 21-35. [26] 虞伟. 基于数学形态学的工业在线检测系统研究[D]. 长沙:湖南大学, 2008. [27] 李天云, 郭跃霞, 王静, 等. 基于数学形态学和短窗功率算法的电能质量扰动检测方法[J]. 电力自动化设备, 2008, 28(7): 37-40. Li Tianyun, Guo Yuexia, Wang Jing, et al. Power quality disturbance detection based on mathematical morphology and power algorithm of short data window [J]. Electric Power Automation Equipment, 2008, 28(7): 37-40. [28] 祝海华, 王泽明. 一种基于时频分布的信号检测的新方法[J]. 制导与引信, 2008, 29(1): 38-43. Zhu Haihua, Wang zeming. A new algorithm of signal detection based on time-frequency distribution[J]. Guidance & Fuze, 2008, 29(1): 38-43 . [29] 刘金鑫, 李鹏, 习朋, 等. 基于数学影态学与后差分算法的微网暂态电能质量扰动定位方法[J]. 电网与清洁能源, 2011, 27(9): 32-36. Liu Jinxin, Li Peng, Xi Peng. Location of transient power quality disturbances in microgrid based on mathematical morphological and backward difference [J]. Power System and Clean Energy, 2011, 27(9): 32-36.