Abstract:In order to increase the annual energy yield of variable-speed wind energy conversion system(WECS), maximum power point tracking control is usually required below rated wind velocity. However, most of the researches only paid their attention to the way to fasten the MPPT speed. In fact, the research of this paper find out that the faster the maximum power point tracking(MPPT) speed is, the larger the transient load the turbine shaft bears. Thus, attempts are firstly made in this paper to find out the relationship between the MPPT speed and the transient load the shaft bears through quantity analysis. Then, principle to design MPPT bandwidth is given out to optimize the transient load. To make the WECS can operate under the designed MPPT bandwidth, the design details on how to make the MPPT bandwidth constant is further given out in this paper. Finally, a 1.2kW variable-speed WECS is established in the laboratory. Theoretic analysis is verified by experimental results.
陈家伟,陈杰,龚春英. 变速风力发电系统瞬态载荷分析及其优化设计途径[J]. 电工技术学报, 2015, 30(4): 233-241.
Chen Jiawei,Chen Jie,Gong Chunying. Way to Optimally Design Transient Load of Variable-Speed Wind Energy Conversion System. Transactions of China Electrotechnical Society, 2015, 30(4): 233-241.
[1] Li H, Chen Z. Overview of different wind generator systems and their comparisons[J]. IET Renewable Power Generation, 2008, 2(2): 123- 128. [2] 郭金东, 赵栋利, 林资旭, 等. 兆瓦级变速恒频风力发电机组控制系统[J]. 中国电机工程学报, 2007, 27(2): 1-5. Guo Jindong, Zhao Dongli, Lin Zixu, et al. Research of the megawatt level variable speed constant frequency wind power unit control system[J]. Proceedings of the CSEE, 2007, 27(2): 1-5. [3] American Wind Energy Association(AWEA). AWEA small wind global market study 2010. http://www. awea.org. [4] Bang D, Polinder H, Shrestha G, et al. Review of generator systems for direct-drive wind turbines[C]. European Wind Energy Conference and Exhibition, Belgium, Brussels, 2008. [5] Agarwal V, Aggarwal R K, Patidar Pravin, et al. A novel scheme for rapid tracking of maximum power point in wind energy generation systems[J]. IEEE Transactions on Energy Conversion, 2010, 25(1): 228-236. [6] Pan Ching Tsai, Juan Yuling. A novel sensorless MPPT controller for a high-efficiency micro-scale wind power generation system[J]. IEEE Transactions on Energy Conversion, 2010, 25(1): 207-216. [7] Kazmi S M R, Goto H, Guo Haijiao, et al. A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems[J]. IEEE Transactions on Energy Conversion, 2011, 58(1): 29-36. [8] Lin Whei Min, Hong Chih Ming. Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system[J]. Energy, 2010(35): 2440-2447. [9] Galdi V, Piccolo A, Siano P. Exploiting maximum energy from variable speed wind power generation systems by using an adaptive Takagi-Sugeno-Kang fuzzy model[J]. Energy Conversion and Management, 2009(50): 413-421. [10] Beltran Brice, Tarek Ahmed-Ali, Mohamed Benbouzid. Sliding mode power control of variable-speed wind energy conversion systems[J]. IEEE Transaction on Energy Conversion, 2008, 23(2): 551- 558. [11] K Ying Shieh, T Ming Hung. FPGA-based speed control IC for PMSM drive with Adaptive fuzzy control [J]. IEEE Transactions on Power Electronics, 2007, 22(6): 2476-2486. [12] 陈杰, 陈冉, 陈家伟, 等. 变速风力发电机组的模糊-单神经元PID控制[J]. 中国电机工程学报, 2011, 31(27): 88-94. Chen Jie, Chen Ran, Chen Jiawei, et al. Fuzzy single- neuron PID control of variable speed wind turbines[J]. Proceedings of the CSEE, 2011, 31(27): 88-94. [13] A Kusiak, Zhang Zijun. Adaptive control of a wind turbine with data mining and swarm intelligence[J]. IEEE Transactions on Sustainable Energy, 2011, 2(1): 28-36. [14] Masiala M, Vafakhah B, Salmon J, et al. Fuzzy self-tuning speed control of an indirect field-oriented control induction motor drive[J]. IEEE Transaction on Industry Applications, 2008, 44(6): 1732-1740. [15] 赵仁德, 王永军, 张加胜. 直驱式永磁同步风力发电系统最大功率追踪控制[J]. 中国电机工程学报, 2009, 29(27): 106-111. Zhao Rende, Wang Yongjun, Zhang Jiasheng. Maximum power point tracking control of the wind energy generation system with direct-driven permanent magnet synchronous generators[J]. Proceedings of the CSEE, 2005, 2009, 29(27): 106-111. [16] Haque M E, Negnevitsky M, Muttaqi K M. A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator[J]. IEEE Transaction on Industrial Applications, 2010, 46(1): 331-339. [17] Bianchi Fernando D, Battista Hernan De, Mantz Ricardo J. Wind turbine control systems principles, modeling and gain scheduling design[M]. Advances in Industrial Control Series, 2006. [18] 李晶, 宋佳骅, 王伟胜. 大型变速恒频风力发电机组建模与仿真[J]. 中国电机工程学报, 2004, 24(6): 100-105. Li Jing, Song Jiahua, Wang Weisheng. Modeling and dynamic simulation of variable-speed wind turbine with large capacity[J]. Proceedings of the CSEE, 2004, 24(6): 100-105. [19] Geng Hua, Yang Geng, Xu David, et al. Unified power control for PMSG-based WECS operating under different grid conditions[J]. IEEE Transaction on Energy Conversion, 2011, 26(3): 822-830. [20] Ciprian Vlad, Iulian Munteanu, Antoneta Iuliana Bratcu, et al. Output power maximization of low- power wind energy conversion systems revisited: possible control solutions[J]. Energy Conversion and Management, 2010, 51: 305-310. [21] Ani Samuel, Polinder Henk, Ferreira Braham. Com- parison of energy yield of small wind turbines in low wind speed area[J]. IEEE Transactions on Sustainable Energy, Early Access Articles 2012. [22] Rolf Hoffmann. A comparison of control concepts for wind turbines in terms of energy capture[D]. Darmstadt: Darmstadt University of Technology, 2002. [23] 陈杰, 陈家伟, 陈冉, 等. 基于永磁同步电机的风力机动静态特性模拟[J]. 中国电机工程学报, 2011, 31(15): 40-46. Chen Jie, Chen Jiawei, Chen Ran, et al. Static and dynamic behavior simulation of wind turbine based on PMSM[J]. Proceedings of the CSEE, 2011, 31(15): 40-46.