Abstract:In traditional principal component analysis(PCA), because of the neglect of the influence of dimension standardization, it was difficult to extract principal components(PCs) effectively. The fault detection method based on relative principal component analysis(RPCA), its control limit is related to the number of PCs and confidence. For these problems, a dynamic data window method based on RPCA is proposed in this paper. The proposed method combined the traditional control limit and dynamic data window by introducing a weight. Finally, it is applied to wind power generation system, can detect failures effectively and reduce the rate of false alarm.
王天真, 刘远, 汤天浩, 陈炎. 基于相对主元分析的动态数据窗口故障检测方法[J]. 电工技术学报, 2013, 28(1): 142-148.
Wang Tianzhen, Liu Yuan, Tang Tianhao, Chen Yan. Dynamic Data Window Fault Detection Method Based on Relative Principal Component Analysis. Transactions of China Electrotechnical Society, 2013, 28(1): 142-148.
[1] Wang Xun, Kruger Uwe, Lennox Barry, et al. Recursive partial least squares algorithms for mointoring complex industial process[J]. Control Engineering Practice, 2003, 11(6): 613-632. [2] Gallagher N B, Wise B M Bulter, White S W, et al. Statistical process control tools for a semiconductor each process: improving robustness through model updating[C]. Proceeding of the ADCHEM, Banff, Canada, 1997: 78-83. [3] Wold S. Exponentially weighted moving principal component analysis and projection to latent stuctures. chemometrics and intelligent laboratory systems[C]. Proceedings of the 3rd Scandinavian Symposium on Chemometrics, 1994: 149-161. [4] Li Weihua, Henry Yue H, Sergio Valle Cervantes, et al. Recursive PCA for adaptive process monitoring[J]. Journal of Process Monitoring, 2000, 10(5): 471-486. [5] Lane S, Martin E B, Morrios A J et al. Application of exponentially weighted principal component analysis for the monitoring of a polymer film manufacturing process[J]. Transactions of the Institute of Measure- ment and Control, 2003, 25(1):17-35. [6] 郭永丽, 吴健, 温步瀛, 等. 变速风力机的建模与仿真[J]. 福建电力与电工, 2008, 28(3): 1-5. Guo Yongli, Wu Jian, Wen Buying, et al. Modeling and simulation of variable wind turbines[J]. Fujian Electric Power and Electrical Engineering, 2008, 28(3): 1-5. [7] 胡静.相对主元分析理论及其应用研究[D].开封:河南大学, 2008. [8] 刘萍.基于动态限的系统非稳定工况故障检测方法建模[D].上海:上海海事大学, 2010. [9] 王天真, 汤天浩, 文成林. 相对主元分析方法及其在故障检测中的应用[J]. 系统仿真学报, 2007, 19(13): 2889-2894. Wang Tianzhen, Tang Tianhao, Wen Chenglin. Relative principal component analysis algorithm and its application in fault detection[J]. Journal of System Simulation, 2007, 19(13): 2889-2894. [10] 刘毅, 谭国俊, 李渊. 基于双三电平变流器永磁直驱风力发电系统[J]. 电机与控制应用, 2011, 38(4): 37-41. Liu Yi, Tan Guojun, Li Yuan. Permanent magnet synchronous motor wind power system based on dual three-level converters [J]. Electric Machine & Control Application, 2011, 38(4): 37-41. [11] 张新燕, 何山, 张晓波, 风力发电机组主要部件故障诊断研究[J]. 新疆大学学报, 2009, 26(2): 140-144. Zhang Xinyan, He Shan, Zhang Xiaobo. Study of fault diagnosis wind turbine generator systerm[J]. Journal of Xinjiang University, 2009, 26(2): 140- 144.