Abstract:Extracting solar cell model parameters with accuracy and rapidity is very important for forecast of power generation of photovoltaic arrays, maximum power point tracking(MPPT) and characteristics study of solar cell fault model. According to the accuracy of parameter estimation using most traditional intelligent algorithms has strong relevance with the initialized value of parameters, moreover, these algorithms almost have a defect of easily falling into local optimum. The paper puts forward a new method to extract the parameters of solar cells based on self-adaptive chaos particle swarm optimization algorithm(SA-CPSO). This paper introduces chaos algorithm into the particle algorithm for chaos initialization of particles and bring chaos perturbation to particles which fall into local optimization which making these particles jump out of local optimum condition so as to achieve the global optimization. At the same time, in order to enhance the balance of the global optimal search and the local search of the particle swarm algorithm, this paper combines the self-adaptive algorithm with the particle swarm algorithm to improve the accuracy in the later evolution period. The results of the simulation experiments show that the self-adaptive chaos particle swarm optimization algorithm has great advantages of convergence accuracy and rapidity to extract the parameters of solar cell. Besides, this paper also analyzes the influence of the irradiance changes on the parameters of solar cell model.
程泽, 董梦男, 杨添剀, 韩丽洁. 基于自适应混沌粒子群算法的光伏电池模型参数辨识[J]. 电工技术学报, 2014, 29(9): 245-252.
Cheng Ze, Dong Mengnan, Yang Tiankai, Han Lijie. Extraction of Solar Cell Model Parameters Based on Self-Adaptive Chaos Particle Swarm Optimization Algorithm. Transactions of China Electrotechnical Society, 2014, 29(9): 245-252.
[1] Fahrenbruch A L, Bube R H. Fundamentals of solar cells[M]. New York: Academic Press, 1983. [2] Rata Y, Noro S, Aoki T. Diagnosis photovoltaic failure by simple function method to acquire I-V curve of photovoltaic modules string[C]. Photovoltaic Specialists Conference(PVSC), 2012: 1340 -1343. [3] Soto W De, Klein S A, Beckman W A. Improvement and validation of a model for photovoltaic array performance[J]. Solar Energy, 2006, 81(1): 78-88. [4] Yadir S, Benhmida M, Sidki M, et al. New method for extracting the model physical parameters of solar cells using explicit analytic solutions of current-voltage equation[C]. International Conference on Microelec- tronics(ICM), 2009: 390-393. [5] 翟载腾, 程晓舫, 杨臧健. 太阳电池一般电流模型参数的解析值[J]. 太阳能学报, 2008, 30(8): 1078- 1082. Zhai Zaiteng, Cheng Xiaofang. Analytic solutions of solar cell model parameters[J]. Acta Energiae Solaris Sinica, 2008, 30(8): 1078-1082. [6] Zhou Jianliang, Wang Bing, Zhang Yiming. Parameter identification and output power prediction of photovoltaic array based on the measured data[J]. Renewable Energy Resources, 2012, 30(7): 1-4. [7] Chan D S H, Phang J C H. Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics[J]. IEEE Transac- tions on Electron Devices, 1987: 286-293. [8] Phang J C H, Chan D S H. Accurate analytical method for the extraction of solar cell model parameters[J]. Electronics Letters, 1984(20): 406-408. [9] Vokas G A, MacHias A V, Souflis J L. Computer modeling and parameters estimation for solar cells [C]. Electrotechnical Conference, 1991. [10] Lyden S, Haque M E, Gargoom A. et al. Modelling and parameter estimation of photovoltaic cell[C]. Universities Power Engineering Conference (AUPEC), 2012: 1-6. [11] Wu Derchin, Shiao Juichung, Lin Chienhsi. Funda- mental parameters extraction from dark I-V charac- teristics: a comprehensive study on amorphous/ crystalline silicon hetero-junction solar cell[C]. Photovoltaic Specialists Conference(PVSC), 2010: 2751-2755. [12] Vishnoi A, Gopal R, Srivastava S K. Distributed parameter analysis of dark I-V characteristics of the solar cell: estimation of equivalent lumped series resistance and diode quality factor[J]. Circuits, Devices and Systems, 1993, 140(3): 155-163. [13] Neukom M T, Zufle S, Ruhstaller B. Reliable extraction of organic solar cell parameters by combining steady-state and transient techniques[J]. Organic Electronics, 2012, 13(12): 2910-2916. [14] Nicolai Moldovan, Rodrigo Picos. Parameter extraction of a solar cell compact model using genetic algorithms [C]. Proceedings of the Spanish Conference on Electron Devices, 2009: 379-382. [15] Xue Lingyun, Sun Lefei, Huang Wei. Solar cells parameter extraction using a hybrid genetic algorithm [C]. Measuring Technology and Mechatronics Automa- tion(ICMTMA), 2011, 3: 303-306. [16] Huang Wei, Jiang Cong, Xue Lingyun, et al. Extracting solar cell model parameters based on chaos particle swarm algorithm[C]. Electric Information and Control Engineering, 2011: 398-402. [17] Shi Yuhui, Eberhart R. A modified particle swarm optimizer[C]. Proceedings of the IEEE International Conference on Evolutionary Computation and the IEEE World Congress on Computational Intelligence, 1998: 69-73. [18] Han Jianghong, Li Zhengrong, Wei Zhenchun. Adaptive particle swarm optimization and simulation[J]. Journal of System Simulation, 2006, 18: 2969- 2971. [19] Zhan Zhihui, Zhang Jun. Adaptive particle swarm optimization[C]. IEEE Transactions on Cybernetics, 2009: 1362-1381. [20] Jamn A, Kapoor A. A new approach to study organic solar cell using Lambert W-function[J]. Solar Energy Materials and Solar Cells, 2005, 86(2): 197-205. [21] Li Bing, Jiang Weisun. Chaos optimization method and its application[J]. Control Theory and Applications, 1997, 14(4): 613-615. [22] 蔡延光, 魏明. 一种新型自适应混沌粒子群在联盟运输调度问题中的研究[J]. 系统工程, 2008, 26(8): 32-36. Cai Yanguang, Wei Ming. Self-adaptive chaos particle swarm optimization for allied vehicle routing problems [J]. Systems Engineering, 2008, 26(8): 32-36.