A Novel Oil-Evaporative Liquid Cooler in Urban Substations
Niu Wenhao1, 2, Zhang Guoqiang1, Jiang Yimin3, Lu Ru4, Wang Jianzhong5
1. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100190 China; 3. East China Grid Limited Shanghai 200090 China; 4. Shanghai Municipal Electric Power Company Shanghai 200002 China; 5. Changshu Youbang Radiator Co. Ltd Changshu 215534 China
Abstract:Decades of experience in underground substations indicated that the traditional cooling technologies have their own shortcomings. Therefore, this paper presents a novel cooling technology, which could be considered as a two-step cooling system, and can effectively transport heat energy from thermal sources underground to radiators on the ground by phase changing of evaporative liquid in an oil-evaporative cooler. The self-circulation of evaporative liquid makes the whole cooling system of high reliability, high cooling efficiency and low noise. This novel cooling technology is verified by designing, founding and testing a prototype of oil-evaporative liquid cooling system on a thermal test platform. The experimental result is compared with theoretical calculation, and the error is analyzed.
[1] 黄磊, 程浩忠, 等. 城市高负荷密度地区220/20kV 供电方案研究[J]. 电力系统保护与控制, 2009, 37(20):1-6. Huang Lei, Cheng Haozhong, et al. 220/20kV power supply scheme in high load density urban areas[J]. Power System Protection and Control, 2009, 37(20): 1-6. [2] 何永秀, 朱茳, 等. 城市电网规划自然灾害风险评价研究[J]. 电工技术学报, 2011, 26(12): 205-210. He Yongxiu, Zhu Jiang, et al. Risk assessment of natural disaster in urban electric power network planning[J]. Transactions of China Electrotechnical Society, 2011, 26(12): 205-210. [3] 谢毓城. 电力变压器手册[M]. 1版. 北京: 机械工业出版社, 2003. [4] 王国华. 油浸式变压器用热交换装置综述[J]. 变压器, 2001, 38(4): 29-31. Wang Guohua. Overview of heat exchange devices used in oil-immersed type transformers[J]. Transformer, 2001, 38(4): 29-31. [5] 厉达, 程浩忠, 等. 变电站的经济容量优化模型及其不同负荷密度下的变压器配置研究[J]. 电力系统保护与控制, 2009, 37(19): 5-9. Li Da, Cheng Haozhong, et al. Optimum model for substation’s economical capacity and the configuration of transformer under different load density[J]. Power System Protection and Control, 2009, 37(19): 5-9. [6] 姜益民. 城市电力变压器发展趋势[J]. 变压器, 2005, 42(8):1-4. Jiang Yimin. Trend of urban power transformer[J]. Transformer, 2005, 42(8): 1-4. [7] 廖瑞金, 孙会刚, 尹建国, 等. 水分对油纸绝缘热老化速率及热老化特征参量的影响[J]. 电工技术学报, 2012, 27(5): 34-42. Liao Ruijin, Sun Huigang, Yin Jianguo, et al. Influence on the thermal aging rate and thermal aging characteristics caused by water content of oil-paper insulation[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 34-42. [8] 姜益民, 徐萍, 叶军. 用于油浸式变压器冷却的油-油冷却系统: 中国, 200720067034.8[P]. 2008-01-02. [9] Wenhao Niu, Guoqiang Zhang, Yimin Jiang, et al. The experimental study of a novel cooling system of a power transformer in an urban underground substation [C]. International Conference on Power System Technology, 2010. [10] 卓宁. 工程对流换热[M]. 北京: 机械工业出版社, 1991. [11] 成展鹏, 胡佐. 一起主变强油风冷回路不正常启动的分析[J]. 电力系统保护与控制, 2009, 37(5): 93-95. Cheng Zhanpeng, Hu Zuo. Analysis of the start up performance of main transformer’s forced-oil-air cooling caused by cooler fault[J]. Power System Protection and Control, 2009, 37(5): 93-95. [12] 祝丽花, 杨庆新, 等. 考虑磁致伸缩效应电力变压器振动噪声的研究[J]. 电工技术学报, 2013, 28(4): 1-6, 19. Zhu Lihua, Yang Qingxin, et al. Research on vibration and noise of power transformer cores including magnetostriction effects[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 1-6, 19. [13] Takagi I, M Higaki, K Endoo, et al. Basic insulation characteristics of perfluorocarbon for large power transformers[J]. IEEE Transactions on Power Delivery, 1988, 3(4): 1809-1815. [14] 牛文豪. 两相流状态下蒸发冷却介质的工频击穿实验研究及蒸发冷却变压器技术问题的探讨[D]. 北京: 中国科学院电工研究所, 2007. [15] 崔禹. 水轮发电机定子自循环蒸发冷却仿真计算与实验[D]. 北京: 中国科学院电工研究所, 2000. [16] 史美中, 王中铮. 热交换器原理与设计[M]. 2版. 南京: 东南大学出版社, 2006. [17] Fair J R. What you need to design thermosiphon reboilers[J]. Petroleum Refiner, 1960, 39(2): 105-123.