Abstract:Magnetically controlled shape memory alloy (MSMA) has the mechanical-magnetic characteristics effect under magnetic field, and the material also has mechanical-electromagnetic characteristics effect under external force, which cause magnetization changes of the MSMA material, using this feature, the development of new vibration sensor can be carried out. Based on the inverse properties of MSMA alloy material, the output characteristics of MSMA vibration sensor under different driving force and bias conditions is studied;From the magnetic circuit model and the stress-strain relationship of the MSMA, the mathematical model between output characteristics and the input mechanical signals is established and the output voltage is calculated. By comparing with the experimental values and calculated value, the model of sensor is proved to be correct, and the research work lays a foundation both in theory and technique for the optimization design of MSMA vibration sensor.
鲁军, 李敏, 王凤翔. 基于MSMA逆特性的振动传感器理论及实验[J]. 电工技术学报, 2014, 29(5): 233-238.
Lu Jun, Li Min, Wang Fengxiang. Theoretical and Experimental Study on Vibration Sensor Based on MSMA Inverse Characteristics. Transactions of China Electrotechnical Society, 2014, 29(5): 233-238.
[1] 杨庆新, 闫荣格, 陈海燕, 等. 新型高性能电工材料应用特性建模技术研究[J]. 电工技术学报, 2006, 21(6): 1-6. Yang Qingxin, Yan Rongge, Chen Haiyan, et al. Modeling techniques for new high performance materials applied to electrical engineering[J]. Transac- tions of China Electrotechnical Society, 2006, 21(6): 1-6. [2] 许韦华, 鲍海, 杨以涵, 等. 压电陶瓷式电子电压互感器的信号处理方法[J]. 电力系统保护与控制, 2010, 38(10): 48-51. Xu Wehua, Bao Hai, Yang Yihan, et al. Signal processing methods of piezoelectric ceramic electronic voltage transformer[J]. Power System Protection and Control, 2010, 38(10): 48-51. [3] 徐元哲, 孙瑞丽, 潘文明. 基于马赫-曾德干涉仪的光纤电流互感器研究[J]. 电力系统保护与控制, 2010, 38(13): 71-73, 78. Xu Yuanzhe, Sun Ruili, Pan Wenming. Study on fiber-optic current sensor based on Mach-Zehnder interfeiometer[J]. Power System Protection and Control, 2010, 38(13): 71-73, 78. [4] 张庆新, 王凤翔. Ni 2 MnGa合金磁控形状记忆效应及外特性[J]. 稀有金属材料与工程, 2005, 34(8): 1263-1266. Zhang Qingxin, Wang Fengxiang. Magnetic shape memory effect and external characteristic of Ni 2 MnGa alloys[J]. Rare Metal Materials and Engineering, 2005, 34(8): 1263-1266. [5] Ullakko K. Magnetically controlled shape memory alloys: a new class of actuator materials[J]. Journal of Materials Engineering and Performance, 1996, 15(3): 405-409. [6] Chernenko V A. Compositional instability of β-phase in Ni-Mn-Ga alloys[J]. Script Mater, 1999, 40(5): 523-527. [7] Murray S J, Marioni M, Allen S M, et al. 6% magnetic- field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga[J]. Applied Physics Letters, 2000, 77(6): 886-888. [8] Ullakko K, et al. Magnetically controlled shape memory alloys: a new class of actuator materials[J]. Journal of Materials Engineering and Performance, 1996, l5 (3): 405-409. [9] 杨兴, 贾振元, 郭东明. 超磁致伸缩材料的伸缩特性及其磁感应强度控制原理及方法的实现[J]. 电工技术学报, 2001, 16(05): 55-58. Yang Xing, Jia Zhenyuan, Cuo Dongming. The elastic characteristic of the magnetostrictive material and the realizalion of its control principle based on magnetic induction[J]. Transactions of China Electrotechnical Society, 2001, 16(05): 55-58. [10] 王凤翔, 李文君, 张庆新, 等. 差动式磁控形状记忆合金执行器研究[J]. 中国电机工程学报, 2005, 25(18): 135-139. Wang Fengxiang, Li Wenjun, Zhang Qingxin, et al. Study on a differential antutor of magnetically controlled shape memory alloy[J]. Proceedings of the CSEE, 2005, 25(18): 135-139. [11] Suorsa I, Tellinen J, Ullakko K, et al. Voltage generation induced by mechanical straining in magnetic shape memory materials[J]. Journal of Applied Physics, 2004, 95(12): 8054-8058. [12] 翁玲, 王博文, 孙英, 等. 磁场和应力作用下的超磁致伸缩换能器的动态模型[J]. 电工技术学报, 2008, 23(12): 17-22. Weng Ling, Wang Bowen, Sun Ying, et al. Dynamic model of giant magnetostrictive transducer under magnetic field and stress[J]. Transactions of China Electrotechnical Society, 2008, 23(12): 17-22. [13] Murray S J, O'Handley R C, Allen S M. Model for discontinious actuation of ferromagnetic shape memory alloy[J]. Journal of Applied Physics, 2001, 89 (2): 1295-1301. [14] O’Handley R C. Model for Strain and Magnetization in Magnetic Shape Memory Alloy[J]. Journal of Applied Physics, 1998, 83(6): 3263-3270. [15] Likhachev A A, Sozinov A, Ullakko K. Different modelling consepts of magnetic shape memory and their comparison with some experimental results obtained in Ni-Mn-Ga[J]. Material Science and Engineering A, 2003, 94(5): 3266-3268. [16] 彭志明, 金学军, 徐祖耀. Ni2MnGa合金结构及磁控形状记忆机制的研究进展[J]. 功能材料, 2004, 35(02): 135-138. Peng Zhiming, Jin Xuejun, Xu Zuyao. Research progress of Ni2MnGa magnetic-field-induced shape memory alloys[J]. Journal of Functional Materials, 2004, 35(02): 135-138. [17] 曾建斌, 白保东, 曾庚鑫, 等. 考虑压力变化的超磁致伸缩超声换能器动态模型[J]. 电工技术学报, 2012, 27(10): 215-219. Zeng Jianbin, Bai Baodong, Zeng Gengxin, et al. Dynamic model of giant magnetostrictive ultrasonic transducer taking account into variable pressure[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 215-219.