Trust Region Regularization Genetic Algorithm for Radio Interference of DC Transmission Lines Passing through Complex Vertical Section Terrains of Conductors
Deng Jun1, 2, Hao Yanpeng1, Li Licheng1, Xiao Yao2
1. South China University of Technology Guangzhou 510640 China; 2. Maintenance & Test Center, EHV, China Southern Power Grid Guangzhou 510663 China
Abstract:The tradition radio interference(RI) for flat terrain problem should become unreliable when the actual DC transmission lines usually pass through complex vertical section terrains of conductors. Therefore, both the trust region regularization method and genetic algorithm are integrated to analyze complex terrains RI distribution for the improvement of simulation charge locations and the charge quantity, respectively. Furthermore, the convergence and accuracy reliability of the proposed method can be verified by comparing the errors between the RI measurement and simulation values from the section of Yunnan to Guangzhou(YG) project. Consequently the proposed algorithm should benefit engineering applications for transmission line design, renovation and environmental evaluation of complex terrain.
邓军, 郝艳捧, 李立浧, 肖遥. 复杂导线垂直断面地势下直流线路无线电干扰计算的信赖域正则化遗传算法[J]. 电工技术学报, 2014, 29(10): 304-311.
Deng Jun, Hao Yanpeng, Li Licheng, Xiao Yao. Trust Region Regularization Genetic Algorithm for Radio Interference of DC Transmission Lines Passing through Complex Vertical Section Terrains of Conductors. Transactions of China Electrotechnical Society, 2014, 29(10): 304-311.
[1] 吴敬儒, 徐永禧. 我国特高压交流输电发展前景[J]. 电网技术, 2005, 29(3): 1-4. Wu Jingru, Xu Yongxi. Development prospect of UHV AC power transmission in China[J]. Power System Technology, 2005, 29(3): 1-4. [2] 施春华, 朱普轩, 蒋剑, 等. ±800kV特高压直流线路采用5分裂导线的电磁环境特性分析[J]. 高电压技术, 2011, 37(3): 666-671. Shi Chunhua, Zhu Puxuan, Jiang Jian, et al. Electromagnetic environment profile of ±800kV UHVDC transmission lines using 5 bundled conductors [J]. High Voltage Engineering, 2011, 37(3): 666-671. [3] 薛志方, 程思勇, 何民, 等. 糯扎渡-广东±800 kV直流输电线路导线选型[J]. 高电压技术, 2009, 35(10): 2344-2349. Xue Zhifang, Cheng Siyong, He Min, et al. Conductor schemes for ±800kV UHVDC transmission line of Nuozhadu-Guangdong[J]. High Voltage Engineering, 2009, 35(10): 2344-2349. [4] 张文亮, 陆家榆, 鞠勇, 等. ±800kV 直流输电线路的导线选型研究[J]. 中国电机工程学报, 2007, 27(27): 1-6. Zhang Wenliang, Lu Jiayu, Ju Yong, et al. Design consideration of conductor bundles of ±800kV DC transmission lines[J]. Proceedings of the CSEE, 2007, 27(27): 1-6. [5] 孟晓波, 卞星明, 陈枫林, 等. 负直流下绞线电晕起始电压分析[J]. 高电压技术, 2011, 37(1): 77-84. Meng Xiaobo, Bian Xingming, Chen Fenglin, et al. Analysis on negative DC corona inception voltage of stranded conductors[J]. High Voltage Engineering, 2011, 37(1): 77-84. [6] 关志成, 陈枫林, 卞星明, 等. 高海拔条件下钢芯铝绞线的正直流电晕起始电压分析[J]. 高电压技术, 2011, 37(4): 809-816. Guan Zhicheng, Chen Fenglin, Bian Xingming, et al. Analysis on onset voltage of positive corona on stranded conductors in high-altitude condition[J]. High Voltage Engineering, 2011, 37(4): 809-816. [7] 李敏, 余占清, 曾嵘, 等. 高海拔±800 kV 直流输电线路电磁环境测量[J]. 南方电网技术, 2011, 5(1): 42-45. Li Min, Yu Zhanqing, Zeng Rong, et al. Electromagnetic environment measurement of ±800kV DC transmission lines at high altitude[J]. Southern Power System Technology, 2011, 5(1): 42-45. [8] 周宏威, 左鹏, 邹军, 等. 复杂地形情况下高压交流输电线路电磁环境特性分析[J]. 电网技术, 2011, 35(9): 164-169. Zhou Hongwei, Zuo Peng, Zou Jun, et al. Analysis on electromagnetic environment characteristics of high- voltage AC transmission lines passing through complex terrains[J]. Power System Technology, 2011, 35(9): 164-169. [9] 俞集辉, 周超. 复杂地势下超高压输电线路的工频电场[J]. 高电压技术, 2006, 32(1): 18-20. Yu Jihui, Zhou Chao. Power-frequency electric field of EHV transmission lines under condition of complex landscape[J]. High Voltage Engineering, 2006, 32(1): 18-20. [10] 彭一琦. 考虑气象条件的输电导线工频电场计算新方法[J]. 高电压技术, 2010, 36(10): 2507-2511. Peng Yiqi. Novel method for transmission line power frequency electric field calculation considering the weather condition[J]. High Voltage Engineering, 2010, 36(10): 2507-2511. [11] 陈楠, 文习山, 蓝磊, 等. 基于电场逆运算的输电导线弧垂计算方法[J]. 中国电机工程学报, 2011, 31(16) : 121-127. Chen Nan, Wen Xishan, Lan Lei, et al. Novel algorithm for transmission line sag calculation based on electrical field invert arithmetic[J]. Proceedings of the CSEE, 2011, 31(16): 121-127. [12] 赵畹君. 高压直流输电工程技术[M]. 北京: 中国电力出版社, 2004. [13] 陈磊. 遗传最小二乘支持向量机法预测时用水量[J]. 浙江大学学报(工学版), 2011, 45(6): 1100-1104. Chen Lei. Genetic least squares support vector machine approach to hourly water consumption predic- tion[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(6): 1100-1104. [14] Armijo L. Minimization of function having Lipschitz continuous first partial derivatives[J]. Pacific Journal of Mathematics, 1966, 16(1): 1-3. [15] Taylor D G. Song Li. Damped Gauss-Newton method for direct stable inversion of continuous-time nonlinear systems[C]. The 29th Annual Conference of the IEEE, Roanoke, Virginia, USA , 2003: 606-610. [16] Sande H V, De G H. Solving nonlinear magnetic problems using Newton trust region methods[J]. IEEE Transactions on Magnetics, 2003, 39(3): 1709-1712. [17] EPRI. HVDC transmission line reference book[M]. Palo Alto, California, USA: EPRI, 1993.