Abstract:For enabling simple and effective analysis of stability of high order paralleled DC-DC converters system, a equivalent model is proposed for solving eigenvalue of the Jacobian matrix. Buck paralleled system adopting PI control is considered. The simple discrete model of paralleled system is founded by adopting state transfer matrix and linearizing the matrix coefficients. The Jacobian matrix of system is solved based on the simple discrete model. The equivalent model of stability analysis for high order paralleled system is deduced by rows and columns transformation. The analytical values of eigenvalues could be directly calculated based on the equivalent model, which greatly simplifies the stability analysis of high order paralleled system. The boundary conditions of voltage loop and current loop control parameters are deduced. The validity of stability analysis model and boundary conditions is approved by comparing the calculation results of model with the simulation and experiment results of paralleled system.
孙晋坤, 刘庆丰, 冷朝霞, 王华民, 同向前. 高阶并联Buck变换器稳定性分析的等效模型[J]. 电工技术学报, 2013, 28(8): 164-172.
Sun Jinkun, Liu Qingfeng, Leng Zhaoxia, Wang Huamin, Tong Xiangqian. Equivalent Model for Stability Analysis of Higher Order Paralleled Buck Converters. Transactions of China Electrotechnical Society, 2013, 28(8): 164-172.
[1] 张军明, 谢小高, 吴新科, 等. DC/DC模块有源均流技术研究[J]. 中国电机工程学报, 2005, 25(19): 31-36. [2] 王建冈, 阮新波, 陈军艳. 航空用大功率模块电源的设计及关键技术应用研究[J]. 电工技术学报, 2005, 20(12): 95-100. [3] 王春芳, 王开艳, 李强. Buck变换器仿真模型及分岔与混沌研究[J]. 系统仿真学报, 2007, 19(24): 5824-5831. [4] 王新生, 王琪, 徐殿国. 基于采样数据模型的DC-DC 变换器中分岔现象分析[J]. 系统仿真学报, 2007, 19(19): 4566-4569. [5] 王开艳, 王春芳, 张玲丽. CCM和DCM模式Buck变换器建模与混沌现象仿真[J]. 系统仿真学报, 2008, 20(14): 3881-3887. [6] Alfayyoumi M, Nayfeh A H, Borojevic D. Modeling and analysis of switching-mode DC-DC regulators[J]. International Journal of Bi-furcation and Chaos, 2000, 10(2): 373-390. [7] Hamill D C, Deane J H B. Modeling of chaotic DC-DC converters by iterated nonlinear mappings[J]. IEEE Transactions of Power Electron, 1992, 7(1): 25-36. [8] Di Bernardo M, Vasca F. Discrete-time maps for the analysis of bifurcations and chaos in DC/DC converters[J]. IEEE Transactions of Circuits Systems Industry 2000, 47: 130-143. [9] Iu H H C, Tse C K. Study of Low-frequency bifurcation phenomena of a parallel-connected boost converter system via simple averaged models[J]. IEEE Transactions of Circuits and Systems I, 2003, 50(5): 679-686. [10] 李明, 戴栋, 马西奎, 等. 自主均流控制的并联Buck 变换器稳定性分析[J]. 中国电机工程学报, 2008, 28(15): 7-15. [11] 陈明亮, 马伟明. 多级并联电流反馈型DC-DC 升压变换器中的分岔与混沌[J]. 中国电机工程学报, 2005, 25 (6): 67-70. [12] Iu H H C, Tse C K, Pjevalica V, et al. Bifurcation behavior in parallel-connected Boost converters[J]. International Journal of Circuit Theory and Applications, 2001, 29 (3): 281-298. [13] 吴俊娟, 邬伟扬, 孙孝峰. 并联Buck变换器中的混沌研究[J]. 中国电机工程学报, 2005, 25 (22): 51-55. [14] Mazumder S K, Nayfeh A H, Boroyevich D. Nonlinear analysis of parallel DC/DC converters[J]. Journal of Vibration and Control, 2003, (9): 775-789. [15] Lili Wang, Yufei Zhou, Junning Chen. Study of nonlinear behaviour and chaotic control in parallel- connection Buck converters[C]. International conference on electrical and control engineering, 2011: 5003-5006. [16] Ammar Natsheh, Gordon Kettleborough, Ghada Aldahim. Experimental study of chaotic behaviour in parallel-connected DC-DC Boost converters with unbalanced inductors[C]. IEEE energy conversion congress and exposition, 2010: 4136-4319. [17] 冷朝霞, 刘健, 刘庆丰, 等. 开关DC-DC变换器的统一离散模型[J]. 电工技术学报, 2009, 24(4): 114-120. [18] 同济大学应用数学系. 线性代数[M]. 4版, 北京: 高等教育出版社, 2003.