Abstract:To reveal the dynamics characteristic of insulator during the icing process, based on the Lagrange method, through solving the 3-D Reynolds Averaged Navier Stokes(RANS) equations of airflow and governing equations of discrete droplets, the numerical simulation of the flow field and droplet trajectories around composite and aerodynamic insulator was carried out. And the numerical simulation was verified by artificial icing tests. The results of simulation and test indicate that: under typical icing weather conditions, the flow field of leeward side is significantly different with that of windward side for composite insulator. And the amount of droplets which flow around the composite insulator and collide to the leeward side with whirlpool is small. In artificial icing test, ice mainly exists on the windward side of composite insulator and there is almost no ice on leeward. The velocity of flow on leeward side of aerodynamic insulator is also big, and large number of droplets can flow around the steel cap to collide with the surface of leeward side. So the ice shape and ice growth process of leeward side are similar with that of windward side for aerodynamic insulator. The icicle blocks the flow and aggravates the turbulence of flow field. The insulator windward side may form icicles under the wind speed of up to 15m/s and the influence of structure of insulator on the icing state may decrease.
张志劲, 黄海舟, 蒋兴良, 胡建林, 孙才新. 基于流体力学的不同型式绝缘子覆冰增长过程分析[J]. 电工技术学报, 2012, 27(10): 35-43.
Zhang Zhijin, Huang Haizhou, Jiang Xingliang, Hu Jianlin, Sun Caixin. Analysis of Ice Growth on Different Type Insulators Based on Fluid Dynamics. Transactions of China Electrotechnical Society, 2012, 27(10): 35-43.
[1] Farzaneh M, Kiernicki J. Ice accretion on energized line insulators[J]. International Journal of Offshore and Polar Engineering, 1992, 2(3): 228-233. [2] Hydro Quebec Committee of Experts. January 1998 ice storm, Report for Hydro Quebec[R]. 1998. [3] 黄强, 王家红, 欧名勇. 2005年湖南电网冰灾事故分析及其应对措施[J]. 电网技术, 2005, 29(24): 16-19. Huang Qiang, Wang Jiahong, Ou Mingyong. Analysis on accidents caused by icing damage in Hunan power grid in 2005 and its countermeasures[J]. Power System Technology, 2005 , 29(24): 16-19. [4] 李庆峰, 范峥, 吴穹, 等. 全国输电线路覆冰情况调研及事故分析[J]. 电网技术, 2008 , 32(9): 33-36 Li Qingfeng, Fan Zheng, Wu Qiong, et al. Investigation of ice-covered transmission lines and analysis on transmission line failures caused by ice-coating in China[J]. Power System Technology, 2008, 32(9): 33-36. [5] Myers T G, Charpin J P F. A mathematical model for atmospheric ice accretion and water flow on a cold surface[J]. International Journal of Heat and Mass Transfer, 2004, 47: 5483-5500. [6] Messinger B L, Equilibrium temperature of an unheated icing surface as a function of airspeed[J]. Aeronautic Sci., 1953, 20(1): 29-42. [7] Makkonen L. Modeling of ice accretion on wires[J]. Journal of Climate and Applied Meteorology, 1984, 23(1): 29-39. [8] 蒋兴良, 易辉. 输电线路覆冰及防护[M]. 北京: 中国电力出版社, 2002. [9] Myers T G. An extension to the messinger model for aircraft icing[J]. American Institute of Aeronautics & Astronautics, 2001, 39(2): 211-218. [10] Fortin G, Laforte J L, Ilinca A. Heat and mass transfer during ice accretion on aircraft wings[J]. International Journal of Thermal Sciences, 2006, 45: 595-606. [11] Mirzaei M, Ardekani M A, Doosttalab M. Numerical and experimental study of flow field characteristics of an iced airfoil[J]. Aerospace Science and Technology, 2009, 13: 267-276. [12] Fu P, Farzaneh M. A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(2): 181-188. [13] Makkonen L. Models for the growth of rime, glaze, icicles and wet snow on structures[J]. American Meteorological Society, 2000, 358: 2913-2939. [14] 蒋兴良, 温作铭. 过冷水滴撞击复合绝缘子表面的数值模拟[J]. 高电压技术, 2008, 34(5): 888-892. Jiang Xingliang, Wen Zuoming. Numerical simulation of supercooled water droplet impingement on composite insulator surface[J]. High Voltage Engineering, 2008, 34(5): 888-892. [15] Rollet-Miet P, Laurence D, Ferziger J. LES and RANS of turbulent flow in tube bundles[J]. International Journal of Heat and Fluid Flow, 1999, 20(3): 241-254. [16] Yeuan J J, Liang T, Hamed A. Viscous simulations in a transonic fan using k-ε and algebraic turbulence models[C]. The 36th Aerospace Science Meeting and Exhibit, Reno, 1998: 0932. [17] 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001. [18] J N Scott, W L Hankey. Navier-stokes solution to the flowfield over ice accretion shapes[J]. Aircraft, 1988, 25: 710-716. [19] 易贤, 朱国林. 翼型积冰的数值模拟[J]. 空气动力学学报, 2002, 24(4): 428-433. Yi Xian, Zhu Guo lin. Numerically simulating of ice accretion on airfoil[J]. Acta Aerodynamica Sinica, 2002, 24(4): 428-433. [20] 杨倩, 常士楠, 袁修干. 水滴撞击特性的数值计算方法研究[J]. 航空学报, 2002, 23(2): 173-176. Yang Qian, Chang Shinan, Yuan Xiugan. Study on numerical method for determinning the droplet trajectories[J]. Acta Aeronautica Et Astronautica Sinica, 2002, 23(2): 173-176. [21] Liu Y P, Gao S, Huang D C, et al. Icing flashover characteristics and discharge process of 500 kV AC transmission line suspension insulator strings[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(2): 434-442. [22] Jiang X L, Chao Y F, Zhang Z J, et al. DC flashover performance and effect of sheds configuration on polluted and ice-covered composite insulators at low atmospheric pressure[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(1): 97-105. [23] 蒋兴良, 舒立春, 张志劲, 等. 覆冰绝缘子长串交流闪络特性和放电过程研究[J]. 中国电机工程学报, 2005, 25(14): 158-163. Jiang Xingliang, Shu Lichun, Zhang Zhijin, et al. Study on AC flashover performance and process of long iced insulator strings[J]. Proceedings of the CSEE, 2005, 25(14): 158-163. [24] 张志劲, 蒋兴良, 胡建林, 等. 雪峰山自然环境试验站覆冰试验技术[J]. 高电压技术, 2011, 37(9): 2308-2314. Zhang Zhijin, Jiang Xingliang, Hu Jianlin, et al. Icing testing technology at Xuefeng mountain natural test station[J]. High Voltage Engineering, 2011, 37(9): 2308-2314. [25] 胡建林. 低气压下覆冰绝缘子(长)串闪络特性及直流放电模型研究[D]. 重庆: 重庆大学, 2009.