Abstract:In this paper, intelligent cycled current ice melting method which groups the bundle conductor sub-conductors and allows the total transmission line load current to flow through each sub-conductor group to achieve the ice melting of the transmission line is proposed. Then based on the analysis of heat balance of the ice and conductor surface under critical ice melting condition in the glaze icing process, a method to calculate the critical current of intelligent cycled current ice melting method is established. The model is tested by experiment in artificial climate chamber. Finite element simulation model is also created. The results of them are basically consistent with each other. Then the factors affecting the critical ice-melting current are analyzed, and the critical ice-melting current under weather conditions of serious icing disaster in recent years is calculated and compared with the current corresponding to economic current density. The results show that: under the same conditions, the critical icing melting current for intelligent cycled current ice melting method is lower than the critical ice-melting current for DC Short-circuit method. Critical icing melting current is related to ambient temperature, wind speed and ice thickness. Under the same environmental parameters, the effect of ice thickness on critical icing melting current is not obvious, under the same ice thickness, critical icing melting current shows gradually saturated increasing trends with lowering ambient temperature or increasing wind speed. The current corresponding to economic current density is higher than the critical ice-melting current under weather conditions of serious icing disaster and retains sufficient margin. Therefore, intelligent cycled current in the view of choosing ice-melting current is feasible.
舒立春, 罗保松, 蒋兴良, 胡琴, 李特, 兰强. 智能循环电流融冰方法及其临界融冰电流研究[J]. 电工技术学报, 2012, 27(10): 26-34.
Shu Lichun, Luo Baosong, Jiang Xingliang, Hu Qin, Li Te, Lan Qiang. Intelligent Cycled Current Ice Melting Method and Its Critical Ice-Melting Current Study. Transactions of China Electrotechnical Society, 2012, 27(10): 26-34.
[1] 王少华, 蒋兴良, 孙才新. 覆冰导线舞动特性及其引起的导线动态张力[J]. 电工技术学报, 2010, 25(1): 159-166. Wang Shaohua, Jiang Xingliang, Sun Caixin. Characteristics of icing conductor galloping and induced dynamic tensile force of the conductor[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 159-166. [2] 焦重庆, 齐磊, 崔翔, 等. 输电线路外施中频电源融冰技术[J]. 电工技术学报, 2010, 25(7): 159-164. Jiao Chongqing, Qi Lei, Cui Xiang, et al. Power line de-icing using medium frequency power source[J]. Transactions of China Electrotechnical Society, 2010, 25(7): 159-164. [3] 张志劲, 蒋兴良, 胡建林, 等. 间插布置方式对交流绝缘子串覆冰特性影响[J]. 电工技术学报, 2011, 26(1): 170-176. Zhang Zhijin, Jiang Xingliang, Hu Jianlin, et al. Influence of the type of insulators connected with alternately large and small diameter sheds on AC icing flashover performance[J]. Transactions of China Electrotechnical Society, 2011, 26(1): 170-176. [4] 蒋兴良, 张丽华. 输电线路除冰防冰技术综述[J]. 高电压技术, 1997, 23(1): 73-76. Jiang Xingliang, Zhang Lihua. De-icing and anti-icing of transmission lines[J]. High Voltage Engineering, 1997, 23(1): 73-76. [5] Farzaneh M. Atmospheric icing of power Networks [M]. New York: Springer, 2008. [6] Alexiades V, Solomon A D. Mathematical modeling of melting and freezing processes[M]. New York: Hemisphere Public Corporation, 1993. [7] 蒋兴良, 易辉. 输电线路覆冰及防护[M]. 北京: 中国电力出版社, 2001. [8] 胡毅. 电网大面积冰灾分析及对策探讨[J]. 高电压技术, 2008, 34(02): 215-219. Hu Yi. Analysis and countermeasures discussion for large area icing accident on power grid[J]. High Voltage Engineering, 2008, 34(02): 215-219. [9] Farzaneh M, Savadjiev K. Statistical analysis of field data for precipitation icing accretion on overhead power lines[J]. IEEE Transactions on Power Delivery, 2005, 20(21): 1080-1087. [10] Sadov Yu S, Shivakumar P N, Mathematical D. Model of ice melting on transmission lines[J]. J Math Model Algor, 2007, 6(1): 273-286. [11] Huneault M, Langheit C, Caron J. Combined models for glaze ice accretion and de-icing of current- carrying electrical conductors[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1611-1616. [12] Personne P, Gayet J F. Ice accretion on wires and anti-icing induced by the Joule effect [J]. Journal of Applied Meteorology, 1988, 27(2): 101-114. [13] 顾明, 马文勇, 全涌, 等. 两种典型覆冰导线气动力特性及稳定性分析[J]. 同济大学学报(自然科学版), 2009, 37(10): 1328-1332. Gu Ming, Ma Wenyong, Quan Yong, et al. Aerodynamic force characteristics and stabilities of two typical iced conductors [J]. Journal of Tongji University(Natural Science), 2009, 37(10): 1328- 1332. [14] 漆铭钧, 李西泉. 湖南电网冰冻灾害及其应对措施的回顾与思考[J]. 华中电力, 2008, 10(02): 25-28, 2001. Qi Mingjun, Li Xiquan. The review and reconsider of icing disaster & countermeasure in hunan electric grid [J]. Central China Electric Power, 2008, 10(02): 25-28. [15] 陆佳政, 蒋正龙, 张红先, 等. 湖南电网2008年冰灾技术分析.[J]. 湖南电力, 2008, 3(03): 1-9. Lu Jiazheng, Jiang Zhenglong, Zhang Hongxian, et al. Technical analysis of hunan power grid ice disaster in 2008. [J]. Hunan Electric Power, 2008, 3(03): 1-9. [16] Poots G, Skelton P L I. The effect of aerodynamic torque on the rotation of an overhead line conductor during snow accretion[J]. Atmospheric Research, 1995, 36(3-4): 251-260. [17] 梁文政. 架空电力线路抗冰(雪)害的设计与对策[J]. 电力设备, 2008, 9(12): 19-22. Liang Wenzheng. Countermeasures and design of overhead power lines anti-ice (snow)[J]. Electric Power Equipment, 2008, 9(12): 19-22. [18] 许树楷, 赵杰. 电网冰灾案例及抗冰融冰技术综述[J]. 南方电网技术, 2008, 2(2): 1-2. Xu Shukai, Zhao Jie. Summarize the ice disaster accidents and its anti-icing technology in power system[J]. Southward Power System Technology, 2008, 2(2): 1-2. [19] Jiang Xingliang, Fan Songhai, Zhang Zhijin. Simulation and experimental investigation of DC Ice-Melting process on an iced conductor[J]. IEEE Transactions on Power Delivery, 2010, 25(02): 919-929. [20] Fan Songhai, Jiang Xingliang, Sun Caixin, Temperature characteristic of DC ice-melting conductor[J]. Cold Regions Science and Technology, 2011, 65(1): 29-38. [21] 蒋兴良, 范松海, 胡建林, 等. 输电线路直流短路融冰的临界电流分析[J]. 中国电机工程学报, 2010, 30(1): 111-116. Jiang Xingliang, Fan Songhai, Hu Jianlin, et al. Analysis of critical ice-melting current for short circuit DC transmission line[J]. Proceeding of the CSEE, 2010, 30(1): 111-116. [22] Imai I. Studies of ice accretion[J]. Research Snow Ice, 1953, 1(1): 35-44. [23] Makkonen L. Modeling of ice accretion on wires[J]. Journal of Climate and Applied Meteorology 1984, 23(6): 929-939. [24] 王晖, 梁新兰. 根据经济电流密度选择导线截面的研究[J]. 科学技术与工程, 2010, 10(25): 6279-6281. Wang Hui, Liang Xinlan. Research on selecting conductor cross section based on economical current density[J]. Science Technology and Engineering, 2010, 10(25): 6279-6281 [25] 蒋兴良, 王大兴, 范松海, 等. 直流融冰过程中覆冰导线表面最高温度试验研究[J]. 高电压技术, 2009, 35(11): 2796-2799. Jiang Xingliang, Wang Daxing, Fan Songhai, et al. Experimental research on maximum temperature of ice-covered conductors during DC ice-melting[J]. High Voltage Engineering, 2009, 35(11): 2796-2799. [26] 郭恒, 马俊. 中国电网大规模冰灾事故调查及分析[J], 重庆电力高等专科学校学报, 2010, 15(4): 28-31. Guo Heng, Ma Jun. A survey and analysis on the large-scale power grid ice disasters in China[J]. Journal of Chongqing Electric Power College. 2010, 15(4): 28-31.